A212013 Triangle read by rows: total number of pairs of states of the first n subshells of the nuclear shell model in which the subshells are ordered by energy level in increasing order.
1, 3, 4, 7, 9, 10, 14, 17, 19, 20, 25, 29, 32, 34, 35, 41, 46, 50, 53, 55, 56, 63, 69, 74, 78, 81, 83, 84, 92, 99, 105, 110, 114, 117, 119, 120, 129, 137, 144, 150, 155, 159, 162, 164, 165, 175, 184, 192, 199, 205, 210, 214, 217, 219, 220, 231, 241, 250, 258, 265, 271, 276, 280, 283, 285, 286
Offset: 1
Examples
Example 1: written as a triangle in which row i is related to the (i-1)st level of nucleus. Triangle begins: 1; 3, 4; 7, 9, 10; 14, 17, 19, 20; 25, 29, 32, 34, 35; 41, 46, 50, 53, 55, 56; 63, 69, 74, 78, 81, 83, 84; 92, 99, 105, 110, 114, 117, 119, 120; 129, 137, 144, 150, 155, 159, 162, 164, 165; 175, 184, 192, 199, 205, 210, 214, 217, 219, 220; ... Column 1 gives positive terms of A004006. Right border gives positive terms of A000292. Row sums give positive terms of A006325. Example 2: written as an irregular triangle in which row j is related to the j-th shell of nucleus. Note that in this case row 4 has only one term. Triangle begins: 1; 3, 4; 7, 9, 10; 14; 17, 19, 20, 25; 29, 32, 34, 35, 41; 46, 50, 53, 55, 56, 63; 69, 74, 78, 81, 83, 84, 92; 99, 105, 110, 114, 117, 119, 120, 129; 137, 144, 150, 155, 159, 162, 164, 165, 175; 184, 192, 199, 205, 210, 214, 217, 219, 220, 231; ...
Links
- Paolo Xausa, Table of n, a(n) for n = 1..11325 (rows 1..150 of triangle, flattened).
Crossrefs
Programs
-
J
row =: monad define d=.>y < |. (+/d)-d ) ;}. row"0 <\ +/\ 1+i.11 NB. Vanessa McHale (vamchale(AT)gmail.com), Mar 01 2025
-
Mathematica
Accumulate[Flatten[Range[Range[15], 1, -1]]] (* Paolo Xausa, Mar 15 2025 *)
-
PARI
row(n) = vector(n, k, n*(n+1)*(n+2)/6 - (n-k)*(n-k+1)/2); \\ Michel Marcus, Mar 10 2025
Formula
a(n) = A212014(n)/2.
Let R = floor(sqrt(8*n+1)) and S = floor(R/2) + R mod 2; then a(n) = binomial(S,3) + n + (n-binomial(S,2))*(S*(S+3)-2*n-2)/4. - Gerald Hillier, Jan 16 2018
T(n,k) = n*(n+1)*(n+2)/6 - (n-k)*(n-k+1)/2. - Davide Rotondo, Mar 10 2025
G.f.: x*y*(1 - x + x^2*(1 - 3*y) - x^5*y^3 + x^3*y*(1 + y) - x^4*y*(1 - 2*y))/((1 - x)^4*(1 - x*y)^4). - Stefano Spezia, Mar 10 2025
Extensions
More terms from Michel Marcus, Mar 10 2025