cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A212013 Triangle read by rows: total number of pairs of states of the first n subshells of the nuclear shell model in which the subshells are ordered by energy level in increasing order.

Original entry on oeis.org

1, 3, 4, 7, 9, 10, 14, 17, 19, 20, 25, 29, 32, 34, 35, 41, 46, 50, 53, 55, 56, 63, 69, 74, 78, 81, 83, 84, 92, 99, 105, 110, 114, 117, 119, 120, 129, 137, 144, 150, 155, 159, 162, 164, 165, 175, 184, 192, 199, 205, 210, 214, 217, 219, 220, 231, 241, 250, 258, 265, 271, 276, 280, 283, 285, 286
Offset: 1

Views

Author

Omar E. Pol, Jul 15 2012

Keywords

Examples

			Example 1: written as a triangle in which row i is related to the (i-1)st level of nucleus. Triangle begins:
    1;
    3,   4;
    7,   9,  10;
   14,  17,  19,  20;
   25,  29,  32,  34,  35;
   41,  46,  50,  53,  55,  56;
   63,  69,  74,  78,  81,  83,  84;
   92,  99, 105, 110, 114, 117, 119, 120;
  129, 137, 144, 150, 155, 159, 162, 164, 165;
  175, 184, 192, 199, 205, 210, 214, 217, 219, 220;
  ...
Column 1 gives positive terms of A004006. Right border gives positive terms of A000292. Row sums give positive terms of A006325.
Example 2: written as an irregular triangle in which row j is related to the j-th shell of nucleus. Note that in this case row 4 has only one term. Triangle begins:
    1;
    3,   4;
    7,   9,  10;
   14;
   17,  19,  20,  25;
   29,  32,  34,  35,  41;
   46,  50,  53,  55,  56,  63;
   69,  74,  78,  81,  83,  84,  92;
   99, 105, 110, 114, 117, 119, 120, 129;
  137, 144, 150, 155, 159, 162, 164, 165, 175;
  184, 192, 199, 205, 210, 214, 217, 219, 220, 231;
  ...
		

Crossrefs

Partial sums of A004736. Other versions are A210983, A212123, A213363, A213373.

Programs

  • J
    row =: monad define
        d=.>y
        < |. (+/d)-d
    )
    ;}. row"0 <\ +/\ 1+i.11 NB. Vanessa McHale (vamchale(AT)gmail.com), Mar 01 2025
    
  • Mathematica
    Accumulate[Flatten[Range[Range[15], 1, -1]]] (* Paolo Xausa, Mar 15 2025 *)
  • PARI
    row(n) = vector(n, k, n*(n+1)*(n+2)/6 - (n-k)*(n-k+1)/2); \\ Michel Marcus, Mar 10 2025

Formula

a(n) = A212014(n)/2.
Let R = floor(sqrt(8*n+1)) and S = floor(R/2) + R mod 2; then a(n) = binomial(S,3) + n + (n-binomial(S,2))*(S*(S+3)-2*n-2)/4. - Gerald Hillier, Jan 16 2018
T(n,k) = n*(n+1)*(n+2)/6 - (n-k)*(n-k+1)/2. - Davide Rotondo, Mar 10 2025
G.f.: x*y*(1 - x + x^2*(1 - 3*y) - x^5*y^3 + x^3*y*(1 + y) - x^4*y*(1 - 2*y))/((1 - x)^4*(1 - x*y)^4). - Stefano Spezia, Mar 10 2025

Extensions

More terms from Michel Marcus, Mar 10 2025