cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A212145 Number of (w,x,y,z) with all terms in {1,...,n} and w<2x+y+z.

Original entry on oeis.org

0, 1, 16, 81, 255, 621, 1285, 2377, 4050, 6481, 9870, 14441, 20441, 28141, 37835, 49841, 64500, 82177, 103260, 128161, 157315, 191181, 230241, 275001, 325990, 383761, 448890, 521977, 603645, 694541, 795335, 906721, 1029416, 1164161
Offset: 0

Views

Author

Clark Kimberling, May 02 2012

Keywords

Comments

A212145(n)+A212087(n)=4^n. For a guide to related sequences, see A211795.

Crossrefs

Cf. A211795.

Programs

  • Magma
    [(3-3*(-1)^n-8*n-4*n^2+8*n^3+94*n^4)/96 : n in [0..40]]; // Wesley Ivan Hurt, Nov 21 2014
  • Maple
    A212145:=n->(3-3*(-1)^n-8*n-4*n^2+8*n^3+94*n^4)/96: seq(A212145(n), n=0..40); # Wesley Ivan Hurt, Nov 21 2014
  • Mathematica
    t = Compile[{{n, _Integer}}, Module[{s = 0},
    (Do[If[w < 2 x + y + z, s = s + 1],
    {w, 1, #}, {x, 1, #}, {y, 1, #}, {z, 1, #}] &[n]; s)]];
    Map[t[#] &, Range[0, 60]] (* A212145 *)
    FindLinearRecurrence[%]
    (* Peter J. C. Moses, Apr 13 2012 *)
    CoefficientList[Series[x (x^4 + 11 x^3 + 22 x^2 + 12 x + 1) / ((1 - x)^5 (x + 1)), {x, 0, 40}], x] (* Vincenzo Librandi, Nov 22 2014 *)
    LinearRecurrence[{4, -5, 0, 5, -4, 1},{0, 1, 16, 81, 255, 621},34] (* Ray Chandler, Aug 02 2015 *)
  • PARI
    concat(0, Vec(-x*(x^4+11*x^3+22*x^2+12*x+1)/((x-1)^5*(x+1)) + O(x^100))) \\ Colin Barker, Nov 21 2014
    

Formula

a(n) = 4*a(n-1)-5*a(n-2)+5*a(n-4)-4*a(n-5)+a(n-6).
a(n) = (3-3*(-1)^n-8*n-4*n^2+8*n^3+94*n^4)/96. - Colin Barker, Nov 21 2014
G.f.: -x*(x^4+11*x^3+22*x^2+12*x+1) / ((x-1)^5*(x+1)). - Colin Barker, Nov 21 2014