A212160 Numbers that are congruent to {2, 10} mod 13.
2, 10, 15, 23, 28, 36, 41, 49, 54, 62, 67, 75, 80, 88, 93, 101, 106, 114, 119, 127, 132, 140, 145, 153, 158, 166, 171, 179, 184, 192, 197, 205, 210, 218, 223, 231, 236, 244, 249, 257, 262, 270, 275, 283, 288, 296, 301, 309, 314, 322, 327, 335, 340, 348
Offset: 0
Examples
Divisibility of A001844 by 13: n=0: A001844(2) = 13 == 0 (mod 13). n=3: A001844(23) = 1105 = 85*13 == 0 (mod 13). However, 8^2 + 9^2 = 145 == 2 (mod 13) is not divisible by 13 because 8 is not a member of the present sequence.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
Crossrefs
Cf. A047219 (case p=5).
Programs
-
Magma
[1/4*(26*n-3*(-1)^n+11): n in [0..60]]; // Vincenzo Librandi, May 24 2012
-
Maple
A212160:=n->(26*n-3*(-1)^n+11)/4; seq(A212160(n), n=0..100); # Wesley Ivan Hurt, Feb 26 2014
-
Mathematica
Table[1/4*(26*n-3*(-1)^n+11),{n,0,60}] (* Vincenzo Librandi, May 24 2012 *)
-
PARI
a(n) = (26*n - 3*(-1)^n + 11)/4 \\ David Lovler, Aug 09 2022
Formula
Bisection: a(2*n) = 13*n + 2, a(2*n+1) = 13*n + 10, n>=0.
O.g.f.: (2 + 8*x + 3*x^2)/((1-x)*(1-x^2)).
E.g.f.: ((26*x + 11)*exp(x) - 3*exp(-x))/4. - David Lovler, Aug 09 2022
Comments