A212169 List of highly composite numbers (A002182) with an exponent in its prime factorization that is at least as great as the number of positive exponents; intersection of A002182 and A212165.
1, 2, 4, 12, 24, 36, 48, 120, 240, 360, 720, 1680, 5040, 10080, 15120, 20160, 25200, 45360, 50400, 110880, 221760, 332640, 554400, 665280, 2882880, 8648640, 14414400, 17297280, 43243200, 294053760
Offset: 1
Examples
A002182(62) = 294053760 = 2^7*3^3*5*7*11*13*17 has 7 positive exponents in its prime factorization, including 5 implied 1's. The maximal exponent in its prime factorization is also 7. Therefore, 294053760 is a term of this sequence.
References
- S. Ramanujan, Highly composite numbers, Proc. Lond. Math. Soc. 14 (1915), 347-409; reprinted in Collected Papers, Ed. G. H. Hardy et al., Cambridge 1927; Chelsea, NY, 1962.
Links
- A. Flammenkamp, List of the first 1200 highly composite numbers
- J. Nagura, On the interval containing at least one prime number, Proc. Japan Acad., 28 (1952), 177-181.
- S. Ramanujan, Highly Composite Numbers (p. 15) (pages 11-12 introduce some of the notation in formula 54)
Crossrefs
Programs
-
Mathematica
okQ[n_] := Module[{f = Transpose[FactorInteger[n]][[2]]}, Max[f] >= Length[f]]; a = 0; t = {}; Do[b = DivisorSigma[0, n]; If[b > a, a = b; If[okQ[n], AppendTo[t, n]]], {n, 10^6}]; t (* T. D. Noe, May 24 2012 *)
Comments