A212177 Number of exponents >= 2 in the canonical prime factorization of the n-th nonsquarefree number (A013929(n)).
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1
Offset: 1
Examples
24 = 2^3*3 has 1 exponent of size 2 or greater in its prime factorization. Since 24 = A013929(8), a(8) = 1.
References
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 844.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- Primefan, The First 2500 Integers Factored (1st of 5 pages).
Programs
-
Haskell
a212177 n = a212177_list !! (n-1) a212177_list = filter (> 0) a056170_list -- Reinhard Zumkeller, Dec 29 2012
-
Mathematica
f[n_] := Module[{c = Count[FactorInteger[n][[;; , 2]], ?(# > 1&)]}, If[n > 1 && c > 0, c, Nothing]]; f[1] = 0; Array[f, 300] (* _Amiram Eldar, Oct 01 2023 *)
-
Python
from math import isqrt from sympy import mobius, factorint def A212177(n): def f(x): return n+sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1)) m, k = n, f(n) while m != k: m, k = k, f(k) return sum(1 for e in factorint(m).values() if e>1) # Chai Wah Wu, Jul 22 2024
Formula
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = (Sum_{p prime} 1/p^2)/(1-1/zeta(2)) = A085548 / A229099 = 1.15347789194214704903... . - Amiram Eldar, Oct 01 2023
Comments