cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A212180 Number of distinct second signatures (cf. A212172) represented among divisors of n.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 4, 1, 2, 1, 2, 1, 1, 1, 3, 2, 1, 3, 2, 1, 1, 1, 5, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 4, 2, 2, 1, 2, 1, 3, 1, 3, 1, 1, 1, 2, 1, 1, 2, 6, 1, 1, 1, 2, 1, 1, 1, 5, 1, 1, 2, 2, 1, 1, 1, 4, 4, 1, 1, 2, 1, 1, 1, 3
Offset: 1

Views

Author

Matthew Vandermast, Jun 04 2012

Keywords

Comments

Completely determined by the exponents >=2 in the prime factorization of n (cf. A212172, A212173).
The fraction of the divisors of n which have a given second signature {S} is also a function of n's second signature. For example, if n has second signature {3,2}, it follows that 1/3 of n's divisors are squarefree. Squarefree numbers are represented with 0's in A212172, in accord with the usual OEIS custom of using 0 for nonexistent elements; in comments, their second signature is represented as { }.

Examples

			The divisors of 72 represent a total of 5 distinct second signatures (cf. A212172), as can be seen from the exponents >= 2, if any, in the canonical prime factorization of each divisor:
{ }: 1, 2 (prime), 3 (prime), 6 (2*3)
{2}: 4 (2^2), 9 (3^2), 12 (2^2*3), 18 (2*3^2)
{3}: 8 (2^3), 24 (2^3*3)
{2,2}: 36 (2^2*3^2)
{3,2}: 72 (2^3*3^2)
Hence, a(72) = 5.
		

Crossrefs

Programs

  • Mathematica
    Array[Length@ Union@ Map[Sort@ Select[FactorInteger[#][[All, -1]], # >= 2 &] &, Divisors@ #] &, 88] (* Michael De Vlieger, Jul 19 2017 *)
  • PARI
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); }; \\ This function from Charles R Greathouse IV, Aug 17 2011
    A057521(n) = { my(f=factor(n)); prod(i=1, #f~, if(f[i, 2]>1, f[i, 1]^f[i, 2], 1)); } \\ This function from Charles R Greathouse IV, Aug 13 2013
    A212173(n) = A046523(A057521(n));
    A212180(n) = { my(vals = Set()); fordiv(n, d, vals = Set(concat(vals, A212173(d)))); length(vals); }; \\ Antti Karttunen, Jul 19 2017
    
  • Python
    from sympy import factorint, divisors, prod
    def P(n): return sorted(factorint(n).values())
    def a046523(n):
        x=1
        while True:
            if P(n)==P(x): return x
            else: x+=1
    def a057521(n): return 1 if n==1 else prod(p**e for p, e in factorint(n).items() if e != 1)
    def a212173(n): return a046523(a057521(n))
    def a(n):
        l=[]
        for d in divisors(n):
            x=a212173(d)
            if not x in l:l+=[x, ]
        return len(l)
    print([a(n) for n in range(1, 51)]) # Indranil Ghosh, Jul 19 2017