cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A212209 Square array A(n,k), n>=1, k>=1, read by antidiagonals: A(n,k) is the number of n-colorings of the square diagonal grid graph DG_(k,k).

Original entry on oeis.org

1, 0, 2, 0, 0, 3, 0, 0, 0, 4, 0, 0, 0, 24, 5, 0, 0, 0, 72, 120, 6, 0, 0, 0, 168, 6720, 360, 7, 0, 0, 0, 360, 935040, 126360, 840, 8, 0, 0, 0, 744, 325061760, 265035240, 1128960, 1680, 9, 0, 0, 0, 1512, 283192323840, 3322711053720, 17160407040, 6510000, 3024, 10
Offset: 1

Views

Author

Alois P. Heinz, May 04 2012

Keywords

Comments

The square diagonal grid graph DG_(n,n) has n^2 = A000290(n) vertices and 2*(n-1)*(2*n-1) = A002943(n-1) edges; see A212208 for example. The chromatic polynomial of DG_(n,n) has n^2+1 = A002522(n) coefficients.
This graph is also called the king graph. - Andrew Howroyd, Jun 25 2017

Examples

			Square array A(n,k) begins:
  1,   0,       0,           0,                0, ...
  2,   0,       0,           0,                0, ...
  3,   0,       0,           0,                0, ...
  4,  24,      72,         168,              360, ...
  5, 120,    6720,      935040,        325061760, ...
  6, 360,  126360,   265035240,    3322711053720, ...
  7, 840, 1128960, 17160407040, 2949948395735040, ...
		

Crossrefs

Columns 1-5 give: A000027, A052762 = 24*A000332, 24*A068250, 24*A068251, 24*A068252.
Rows n=1-16 give: A000007, A000038, 3*A000007, 4*A068293, 5*A068294, 6*A068295, 7*A068296, 8*A068297, 9*A068298, 10*A068299, 11*A068300, 12*A068301, 13*A068302, 14*A068303, 15*A068304, 16*A068305.