A068305
1/16 the number of colorings of an n X n octagonal array with 16 colors.
Original entry on oeis.org
1, 2730, 1097599230, 65013773510046270, 567344965666217922692546310, 729405912578031916581095228654013174510, 138156586653036397048665899068285784224754055444205830, 3855264256604335001270711977271948484283006596889356139648293174199350
Offset: 1
A212208
Triangle T(n,k), n>=1, 0<=k<=n^2, read by rows: row n gives the coefficients of the chromatic polynomial of the square diagonal grid graph DG_(n,n), highest powers first.
Original entry on oeis.org
1, 0, 1, -6, 11, -6, 0, 1, -20, 174, -859, 2627, -5082, 6048, -4023, 1134, 0, 1, -42, 825, -10054, 85011, -528254, 2491825, -9084089, 25795983, -57031153, 97292827, -125639547, 118705077, -77301243, 30931875, -5709042, 0, 1, -72, 2492, -55183, 877812
Offset: 1
3 example graphs: o---o---o
. |\ /|\ /|
. | X | X |
. |/ \|/ \|
. o---o o---o---o
. |\ /| |\ /|\ /|
. | X | | X | X |
. |/ \| |/ \|/ \|
. o o---o o---o---o
Graph: DG_(1,1) DG_(2,2) DG_(3,3)
Vertices: 1 4 9
Edges: 0 6 20
The square diagonal grid graph DG_(2,2) equals the complete graph K_4 and has chromatic polynomial q*(q-1)*(q-2)*(q-3) = q^4 -6*q^3 +11*q^2 -6*q => row 2 = [1, -6, 11, -6, 0].
Triangle T(n,k) begins:
1, 0;
1, -6, 11, -6, 0;
1, -20, 174, -859, 2627, -5082, ...
1, -42, 825, -10054, 85011, -528254, ...
1, -72, 2492, -55183, 877812, -10676360, ...
1, -110, 5895, -205054, 5203946, -102687204, ...
1, -156, 11946, -598491, 22059705, -637802510, ...
Row sums (for n>1) and last elements of rows give:
A000004, row lengths give:
A002522.
A208021
T(n,k) = Number of n X k nonnegative integer arrays with new values 0 upwards introduced in row major order and no element equal to any horizontal, vertical, diagonal or antidiagonal neighbor (colorings ignoring permutations of colors).
Original entry on oeis.org
1, 1, 1, 2, 1, 2, 5, 7, 7, 5, 15, 87, 270, 87, 15, 52, 1657, 27093, 27093, 1657, 52, 203, 43833, 5252041, 30066912, 5252041, 43833, 203, 877, 1515903, 1688298227, 80318704605, 80318704605, 1688298227, 1515903, 877, 4140, 65766991
Offset: 1
Table starts
...1........1............2...............5...............15..............52
...1........1............7..............87.............1657...........43833
...2........7..........270...........27093..........5252041......1688298227
...5.......87........27093........30066912......80318704605.421673189900658
..15.....1657......5252041.....80318704605.3662498214110836
..52....43833...1688298227.421673189900658
.203..1515903.819147302097
.877.65766991
...
Some solutions for n=4 k=3
..0..1..2....0..1..0....0..1..0....0..1..0....0..1..0....0..1..0....0..1..2
..2..3..4....2..3..2....2..3..2....2..3..2....2..3..2....2..3..2....2..3..0
..5..6..0....4..0..4....0..1..0....4..1..0....0..1..0....0..4..0....4..5..4
..2..3..1....1..2..1....2..3..4....5..2..3....2..4..2....1..2..1....0..1..2
A289136
Number of colorings of the n X n king graph up to permutation of the colors.
Original entry on oeis.org
1, 1, 270, 30066912, 3662498214110836, 978788002444637886853083440, 1017523795194980592656592864724960780556190, 6723457445689415320074916040888682277646129463792942126176174
Offset: 1
A068250
1/24 the number of colorings of a 3 X 3 octagonal array with n colors.
Original entry on oeis.org
3, 280, 5265, 47040, 271250, 1170288, 4105710, 12334080, 32837805, 79365000, 177200023, 370319040, 731732820, 1377981920, 2488927500, 4334174208, 7307669895, 11972250360, 19116135885, 29823640000, 45562619718, 68291480400, 100588847450, 145809331200
Offset: 4
- Alois P. Heinz, Table of n, a(n) for n = 4..1000
- Index entries for linear recurrences with constant coefficients, signature (10,-45,120,-210,252,-210,120,-45,10,-1).
-
[n*(n-3)^4*(n^4-8*n^3+24*n^2-31*n+14)/24: n in [4..27]]; // Bruno Berselli, May 04 2012
-
a:= n-> (n-2)*(n-1)*(n^2-5*n+7)*(n-3)^4*n/24:
seq(a(n), n=4..40); # Alois P. Heinz, May 04 2012
A068252
1/24 the number of colorings of a 5 X 5 octagonal array with n colors.
Original entry on oeis.org
15, 13544240, 138446293905, 122914516488960, 25999554922206250, 2153128175383358880, 92188903926678792030, 2420834781123276840960, 43619102772258066624945, 582825001391348708850000, 6107144216640392108077895, 52317129545418639168933120
Offset: 4
-
a:= n-> (749775400182+ (-5612178463551+ (20061456442182+ (-45672704671212+ (74464103614803+ (-92636079268387+ (91447345270476+ (-73522860568402+ (49016457219873+ (-27440963053418+ (13013052032729+ (-5257328793792+
(1815373485182+ (-536334824998+ (135430280705+ (-29134045002+ (5309217327+ (-812594023+ (103170636+ (-10676360+ (877812+ (-55183+ (2492+(-72+n)*n) *n)*n) *n)*n) *n)*n) *n)*n) *n)*n) *n)*n) *n)*n) *n) *n) *n) *n) *n) *n) *n) *n) *n/24:
seq(a(n), n=4..20); # Alois P. Heinz, May 04 2012
A068294
1/5 the number of colorings of an n X n octagonal array with 5 colors.
Original entry on oeis.org
1, 24, 1344, 187008, 65012352, 56638464768, 123968096842368, 682463815024774272, 9455897825697924931968, 329835949030491781985964672, 28967729014957963606903092579840, 6405563550899359667890368716213003520, 3566277295414164369700428069692324488565760, 4998812913455162820842387241261713638306330756608
Offset: 1
A068295
1/6 the number of colorings of an n X n octagonal array with 6 colors.
Original entry on oeis.org
1, 60, 21060, 44172540, 553785175620, 41503847098683420, 18595665812583520041060, 49808667823922052573513153300, 797553247913411612275102392386088300, 76343133584713932892876357250654965547341140, 43684986787209742051887297631700585399912369700067860
Offset: 1
A068296
1/7 the number of colorings of an n X n octagonal array with 7 colors.
Original entry on oeis.org
1, 120, 161280, 2451486720, 421421199390720, 819296954885530030080, 18013654371239090908333148160, 4479149596637688119857975807616194560, 12595676735919821000208123310178819903753287680, 400570738126155220679966449710339235598075113573822617600
Offset: 1
A068297
1/8 the number of colorings of an n X n octagonal array with 8 colors.
Original entry on oeis.org
1, 210, 813750, 58494843750, 77998664766618750, 1929292299321647690193750, 885215793907124317300191394818750, 7534251364260636630211044759506294857668750
Offset: 1
Showing 1-10 of 18 results.
Comments