cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 18 results. Next

A068305 1/16 the number of colorings of an n X n octagonal array with 16 colors.

Original entry on oeis.org

1, 2730, 1097599230, 65013773510046270, 567344965666217922692546310, 729405912578031916581095228654013174510, 138156586653036397048665899068285784224754055444205830, 3855264256604335001270711977271948484283006596889356139648293174199350
Offset: 1

Views

Author

R. H. Hardin, Feb 24 2002

Keywords

Crossrefs

Extensions

a(5)-a(8) from Alois P. Heinz, May 04 2012

A212208 Triangle T(n,k), n>=1, 0<=k<=n^2, read by rows: row n gives the coefficients of the chromatic polynomial of the square diagonal grid graph DG_(n,n), highest powers first.

Original entry on oeis.org

1, 0, 1, -6, 11, -6, 0, 1, -20, 174, -859, 2627, -5082, 6048, -4023, 1134, 0, 1, -42, 825, -10054, 85011, -528254, 2491825, -9084089, 25795983, -57031153, 97292827, -125639547, 118705077, -77301243, 30931875, -5709042, 0, 1, -72, 2492, -55183, 877812
Offset: 1

Views

Author

Alois P. Heinz, May 04 2012

Keywords

Comments

The square diagonal grid graph DG_(n,n) has n^2 = A000290(n) vertices and 2*(n-1)*(2*n-1) = A002943(n-1) edges. The chromatic polynomial of DG_(n,n) has n^2+1 = A002522(n) coefficients.

Examples

			3 example graphs:                          o---o---o
.                                          |\ /|\ /|
.                                          | X | X |
.                                          |/ \|/ \|
.                             o---o        o---o---o
.                             |\ /|        |\ /|\ /|
.                             | X |        | X | X |
.                             |/ \|        |/ \|/ \|
.                o            o---o        o---o---o
Graph:        DG_(1,1)       DG_(2,2)       DG_(3,3)
Vertices:        1              4              9
Edges:           0              6             20
The square diagonal grid graph DG_(2,2) equals the complete graph K_4 and has chromatic polynomial q*(q-1)*(q-2)*(q-3) = q^4 -6*q^3 +11*q^2 -6*q => row 2 = [1, -6, 11, -6, 0].
Triangle T(n,k) begins:
1,    0;
1,   -6,    11,      -6,        0;
1,  -20,   174,    -859,     2627,      -5082, ...
1,  -42,   825,  -10054,    85011,    -528254, ...
1,  -72,  2492,  -55183,   877812,  -10676360, ...
1, -110,  5895, -205054,  5203946, -102687204, ...
1, -156, 11946, -598491, 22059705, -637802510, ...
		

Crossrefs

Columns 1-2 give: A000012, (-1)*A002943(n-1).
Row sums (for n>1) and last elements of rows give: A000004, row lengths give: A002522.

A208021 T(n,k) = Number of n X k nonnegative integer arrays with new values 0 upwards introduced in row major order and no element equal to any horizontal, vertical, diagonal or antidiagonal neighbor (colorings ignoring permutations of colors).

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 5, 7, 7, 5, 15, 87, 270, 87, 15, 52, 1657, 27093, 27093, 1657, 52, 203, 43833, 5252041, 30066912, 5252041, 43833, 203, 877, 1515903, 1688298227, 80318704605, 80318704605, 1688298227, 1515903, 877, 4140, 65766991
Offset: 1

Views

Author

R. H. Hardin, Feb 22 2012

Keywords

Comments

Equivalently, the number of colorings of the n x k king graph using any number of colors up to permutation of the colors. - Andrew Howroyd, Jun 25 2017

Examples

			Table starts
...1........1............2...............5...............15..............52
...1........1............7..............87.............1657...........43833
...2........7..........270...........27093..........5252041......1688298227
...5.......87........27093........30066912......80318704605.421673189900658
..15.....1657......5252041.....80318704605.3662498214110836
..52....43833...1688298227.421673189900658
.203..1515903.819147302097
.877.65766991
...
Some solutions for n=4 k=3
..0..1..2....0..1..0....0..1..0....0..1..0....0..1..0....0..1..0....0..1..2
..2..3..4....2..3..2....2..3..2....2..3..2....2..3..2....2..3..2....2..3..0
..5..6..0....4..0..4....0..1..0....4..1..0....0..1..0....0..4..0....4..5..4
..2..3..1....1..2..1....2..3..4....5..2..3....2..4..2....1..2..1....0..1..2
		

Crossrefs

Columns 1-5 are A000110(n-1), A020556(n-1), A208018, A208019, A208020.
Main diagonal is A289136.

A289136 Number of colorings of the n X n king graph up to permutation of the colors.

Original entry on oeis.org

1, 1, 270, 30066912, 3662498214110836, 978788002444637886853083440, 1017523795194980592656592864724960780556190, 6723457445689415320074916040888682277646129463792942126176174
Offset: 1

Views

Author

Andrew Howroyd, Jun 25 2017

Keywords

Crossrefs

Main diagonal of A208021.

Programs

A068250 1/24 the number of colorings of a 3 X 3 octagonal array with n colors.

Original entry on oeis.org

3, 280, 5265, 47040, 271250, 1170288, 4105710, 12334080, 32837805, 79365000, 177200023, 370319040, 731732820, 1377981920, 2488927500, 4334174208, 7307669895, 11972250360, 19116135885, 29823640000, 45562619718, 68291480400, 100588847450, 145809331200
Offset: 4

Views

Author

R. H. Hardin, Feb 24 2002

Keywords

Crossrefs

Programs

  • Magma
    [n*(n-3)^4*(n^4-8*n^3+24*n^2-31*n+14)/24: n in [4..27]]; // Bruno Berselli, May 04 2012
  • Maple
    a:= n-> (n-2)*(n-1)*(n^2-5*n+7)*(n-3)^4*n/24:
    seq(a(n), n=4..40);  # Alois P. Heinz, May 04 2012

Formula

From Alois P. Heinz, May 04 2012: (Start)
G.f.: (832*x^5+4805*x^4+6630*x^3+2600*x^2+250*x+3)*x^4 / (x-1)^10.
a(n) = (n^9 -20*n^8 +174*n^7 -859*n^6 +2627*n^5 -5082*n^4 +6048*n^3 -4023*n^2 +1134*n)/24. (End)

A068252 1/24 the number of colorings of a 5 X 5 octagonal array with n colors.

Original entry on oeis.org

15, 13544240, 138446293905, 122914516488960, 25999554922206250, 2153128175383358880, 92188903926678792030, 2420834781123276840960, 43619102772258066624945, 582825001391348708850000, 6107144216640392108077895, 52317129545418639168933120
Offset: 4

Views

Author

R. H. Hardin, Feb 24 2002

Keywords

Crossrefs

Programs

  • Maple
    a:= n-> (749775400182+ (-5612178463551+ (20061456442182+ (-45672704671212+ (74464103614803+ (-92636079268387+ (91447345270476+ (-73522860568402+ (49016457219873+ (-27440963053418+ (13013052032729+ (-5257328793792+
    (1815373485182+ (-536334824998+ (135430280705+ (-29134045002+ (5309217327+ (-812594023+ (103170636+ (-10676360+ (877812+ (-55183+ (2492+(-72+n)*n) *n)*n) *n)*n) *n)*n) *n)*n) *n)*n) *n)*n) *n)*n) *n) *n) *n) *n) *n) *n) *n) *n) *n/24:
    seq(a(n), n=4..20); #  Alois P. Heinz, May 04 2012

Extensions

Extended beyond a(9) by Alois P. Heinz, May 04 2012

A068294 1/5 the number of colorings of an n X n octagonal array with 5 colors.

Original entry on oeis.org

1, 24, 1344, 187008, 65012352, 56638464768, 123968096842368, 682463815024774272, 9455897825697924931968, 329835949030491781985964672, 28967729014957963606903092579840, 6405563550899359667890368716213003520, 3566277295414164369700428069692324488565760, 4998812913455162820842387241261713638306330756608
Offset: 1

Views

Author

R. H. Hardin, Feb 24 2002

Keywords

Crossrefs

Extensions

a(8) from Alois P. Heinz, May 03 2012
a(9)-a(14) from Andrew Howroyd, Jun 25 2017

A068295 1/6 the number of colorings of an n X n octagonal array with 6 colors.

Original entry on oeis.org

1, 60, 21060, 44172540, 553785175620, 41503847098683420, 18595665812583520041060, 49808667823922052573513153300, 797553247913411612275102392386088300, 76343133584713932892876357250654965547341140, 43684986787209742051887297631700585399912369700067860
Offset: 1

Views

Author

R. H. Hardin, Feb 24 2002

Keywords

Crossrefs

Extensions

a(7)-a(8) from Alois P. Heinz, May 04 2012
a(9)-a(11) from Andrew Howroyd, Jun 25 2017

A068296 1/7 the number of colorings of an n X n octagonal array with 7 colors.

Original entry on oeis.org

1, 120, 161280, 2451486720, 421421199390720, 819296954885530030080, 18013654371239090908333148160, 4479149596637688119857975807616194560, 12595676735919821000208123310178819903753287680, 400570738126155220679966449710339235598075113573822617600
Offset: 1

Views

Author

R. H. Hardin, Feb 24 2002

Keywords

Crossrefs

Extensions

a(6)-a(8) from Alois P. Heinz, May 04 2012
a(9)-a(10) from Andrew Howroyd, Jun 25 2017

A068297 1/8 the number of colorings of an n X n octagonal array with 8 colors.

Original entry on oeis.org

1, 210, 813750, 58494843750, 77998664766618750, 1929292299321647690193750, 885215793907124317300191394818750, 7534251364260636630211044759506294857668750
Offset: 1

Views

Author

R. H. Hardin, Feb 24 2002

Keywords

Crossrefs

Extensions

a(6)-a(8) from Alois P. Heinz, May 04 2012
Showing 1-10 of 18 results. Next