cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 67 results. Next

A068239 1/2 the number of colorings of a 3 X 3 square array with n colors.

Original entry on oeis.org

1, 123, 4806, 71410, 583455, 3232341, 13675228, 47502036, 141991245, 377162335, 910842306, 2033854758, 4253012491, 8411348505, 15856955640, 28673921896, 49991146713, 84387303171, 138412872190, 221253017370, 345558093111, 528471784093, 792890261076
Offset: 2

Views

Author

R. H. Hardin, Feb 24 2002

Keywords

Crossrefs

Programs

  • Maple
    a:= n-> (79+(-323+(594+(-648+(459+(-216+(66+(-12+n)*n)*n) *n)*n)*n)*n)*n) *n/2:
    seq(a(n), n=2..30); # Alois P. Heinz, Apr 27 2012

Formula

From Alois P. Heinz, Apr 27 2012: (Start)
G.f.: x^2*(1199*x^7 +16567*x^6 +60099*x^5 +71075*x^4 +28765*x^3 +3621*x^2 +113*x+1) / (x-1)^10.
a(n) = (79*n -323*n^2 +594*n^3 -648*n^4 +459*n^5 -216*n^6 +66*n^7 -12*n^8 +n^9) / 2.
(End)

A212209 Square array A(n,k), n>=1, k>=1, read by antidiagonals: A(n,k) is the number of n-colorings of the square diagonal grid graph DG_(k,k).

Original entry on oeis.org

1, 0, 2, 0, 0, 3, 0, 0, 0, 4, 0, 0, 0, 24, 5, 0, 0, 0, 72, 120, 6, 0, 0, 0, 168, 6720, 360, 7, 0, 0, 0, 360, 935040, 126360, 840, 8, 0, 0, 0, 744, 325061760, 265035240, 1128960, 1680, 9, 0, 0, 0, 1512, 283192323840, 3322711053720, 17160407040, 6510000, 3024, 10
Offset: 1

Views

Author

Alois P. Heinz, May 04 2012

Keywords

Comments

The square diagonal grid graph DG_(n,n) has n^2 = A000290(n) vertices and 2*(n-1)*(2*n-1) = A002943(n-1) edges; see A212208 for example. The chromatic polynomial of DG_(n,n) has n^2+1 = A002522(n) coefficients.
This graph is also called the king graph. - Andrew Howroyd, Jun 25 2017

Examples

			Square array A(n,k) begins:
  1,   0,       0,           0,                0, ...
  2,   0,       0,           0,                0, ...
  3,   0,       0,           0,                0, ...
  4,  24,      72,         168,              360, ...
  5, 120,    6720,      935040,        325061760, ...
  6, 360,  126360,   265035240,    3322711053720, ...
  7, 840, 1128960, 17160407040, 2949948395735040, ...
		

Crossrefs

Columns 1-5 give: A000027, A052762 = 24*A000332, 24*A068250, 24*A068251, 24*A068252.
Rows n=1-16 give: A000007, A000038, 3*A000007, 4*A068293, 5*A068294, 6*A068295, 7*A068296, 8*A068297, 9*A068298, 10*A068299, 11*A068300, 12*A068301, 13*A068302, 14*A068303, 15*A068304, 16*A068305.

A068248 1/6 the number of colorings of a 5 X 5 staggered hexagonal array with n colors.

Original entry on oeis.org

1, 673072, 24674450670, 47695073906240, 16222886703881375, 1842996310592836896, 98798502888215704812, 3068393794369671728640, 62960689505171989129005, 933100312771109288146000, 10639781342848431789710266, 97779035987698387480546752, 750090455960001686602653035
Offset: 3

Views

Author

R. H. Hardin, Feb 24 2002

Keywords

Crossrefs

Programs

  • Maple
    a:= n-> (3006792824+ (-26845691044+ (115537440058+ (-319333174471+ (636781496832+ (-975359012827+ (1192518013138+ (-1193724499144+ (995462037353+ (-699932345254+ (418375639535+ (-213720396671+ (93568819963+ (-35133625647+ (11298632584+
    (-3101089710+ (722137763+ (-141421592+ (23000726+ (-3051871+ (321994+ (-25992+ (1508+(-56+n)*n) *n)*n) *n)*n) *n)*n) *n)*n) *n)*n) *n)*n) *n) *n) *n) *n) *n) *n) *n) *n) *n) *n) *n/6:
    seq (a(n), n=3..40);  # Alois P. Heinz, May 03 2012

Extensions

Extended beyond a(10) by Alois P. Heinz, May 03 2012

A068293 a(1) = 1; thereafter a(n) = 6*(2^(n-1) - 1).

Original entry on oeis.org

1, 6, 18, 42, 90, 186, 378, 762, 1530, 3066, 6138, 12282, 24570, 49146, 98298, 196602, 393210, 786426, 1572858, 3145722, 6291450, 12582906, 25165818, 50331642, 100663290, 201326586, 402653178, 805306362, 1610612730, 3221225466, 6442450938, 12884901882
Offset: 1

Views

Author

R. H. Hardin, Feb 24 2002

Keywords

Comments

1/4 the number of colorings of an n X n octagonal array with 4 colors.
Consider the planar net 3^6 (as in the top left figure in the uniform planar nets link). Then a(n) is the total number of ways that a spider starting at a point P can reach any point n steps away by using a path of length n. - N. J. A. Sloane, Feb 20 2016
From Gary W. Adamson, Jan 13 2009: (Start)
Equals inverse binomial transform of A091344: (1, 7, 31, 115, 391, ...).
Equals binomial transform of (1, 5, 7, 5, 7, 5, ...). (End)
For n > 1, number of ternary strings of length n with exactly 2 different digits. - Enrique Navarrete, Nov 20 2020

Crossrefs

Programs

  • Magma
    [1] cat [6*(2^(n-1)-1): n in [2..40]]; // Vincenzo Librandi, Feb 20 2016
  • Mathematica
    a=0; lst={1}; k=6; Do[a+=k; AppendTo[lst, a]; k+=k, {n, 0, 5!}]; lst (* Vladimir Joseph Stephan Orlovsky, Dec 16 2008 *)
    Transpose[NestList[{First[#]+1,6(2^First[#]-1)}&,{1,1},30]][[2]] (* or *) Join[{1},LinearRecurrence[{3,-2},{6,18},30]] (* Harvey P. Dale, Nov 27 2011 *)
  • PARI
    a(n)=polcoeff(prod(i=1,2,(1+i*x))/(prod(i=1,2,(1-i*x))+x*O(x^n)),n)
    for(n=0,50,print1(a(n),","))
    

Formula

G.f.: (1+x)*(1+2*x)/((1-x)*(1-2*x)). - Benoit Cloitre, Apr 13 2002
a(n) = 3*a(n-1) - 2*a(n-2); a(1)=1, a(2)=6, a(3)=18. - Harvey P. Dale, Nov 27 2011
E.g.f.: 1 - 6*exp(x)*(exp(x) - 1). - Stefano Spezia, May 18 2024

Extensions

More terms from Benoit Cloitre, Apr 13 2002
Old definition (which is now a comment) replaced with explicit formula by N. J. A. Sloane, May 12 2010

A068253 1/3 of the number of colorings of an n X n square array with 3 colors.

Original entry on oeis.org

1, 6, 82, 2604, 193662, 33865632, 13956665236, 13574876544396, 31191658416342674, 169426507164530254380, 2176592549084872196370724, 66158464020552857153017287240, 4759146677426447759184119036493676, 810410082813497381147177065840601910384
Offset: 1

Views

Author

R. H. Hardin, Feb 24 2002

Keywords

Crossrefs

See A047938 for number of improper colorings.
Main diagonal of A078099.
Twice A207993 for n>1.

Programs

  • Mathematica
    M[1] = {{1}}; M[m_] := M[m] = {{M[m - 1], Transpose[M[m - 1]]}, {Array[0 &, {2^(m - 2), 2^(m - 2)}], M[m - 1]}} // ArrayFlatten; W[m_] := M[m] + Transpose[M[m]]; T[m_, 1] := 2^(m - 1); T[1, n_] := 2^(n - 1); T[m_, n_] := MatrixPower[W[m], n - 1] // Flatten // Total; a[n_] := T[n, n]; Table[an = a[n]; Print["a(", n, ") = ", an]; an, {n, 1, 12}] (* Jean-François Alcover, Nov 01 2017, after code from A078099 *)

Formula

For formula see A078099.

Extensions

More terms from Vladeta Jovovic, Jul 22 2004
a(11)-a(12) from Alois P. Heinz, Mar 25 2009
a(13)-a(14) from Andrew Howroyd, Jun 26 2017

A068271 1/4 the number of colorings of an n X n rhombic hexagonal array with 4 colors.

Original entry on oeis.org

1, 12, 264, 11424, 1008576, 184910592, 71033971200, 57469424744448, 98237339264864256, 355574469749489123328, 2729407814499050197254144, 44482040254775494064841818112, 1540473331004371306422199656382464, 113440401780206156918876627438624833536
Offset: 1

Views

Author

R. H. Hardin, Feb 24 2002

Keywords

Comments

Terms for rhombic- and staggered- hexagonal arrays are the same for n in 1..4.

Crossrefs

Extensions

a(9) from Alois P. Heinz, May 02 2012
a(10)-a(14) from Andrew Howroyd, Jun 25 2017

A068244 1/6 the number of colorings of a 3 X 3 rhombic- or staggered- hexagonal array with n colors.

Original entry on oeis.org

1, 176, 5490, 65600, 455875, 2239776, 8647716, 27962880, 78920325, 200002000, 464447126, 1003294656, 2039332295, 3935444800, 7261533000, 12884914176, 22089914121, 36733221360, 59442494650, 93866696000, 144987663051, 219503536736, 326295822700, 476993088000
Offset: 3

Views

Author

R. H. Hardin, Feb 24 2002

Keywords

Comments

Numbers for rhombic- and staggered- hexagonal arrays differ above 4 X 4.

Crossrefs

Programs

  • Maple
    a:= n-> (248 +(-1012 +(1786 +(-1791 +(1120 +(-448 +(112 +(-16+n)*n) *n) *n) *n) *n) *n) *n) *n/6:
    seq(a(n), n=3..40);  #  Alois P. Heinz, May 02 2012

Formula

From Alois P. Heinz, May 02 2012: (Start)
G.f.: (1089*x^6+10934*x^5+26015*x^4+18500*x^3+3775*x^2+166*x+1) / (x-1)^10*x^3.
a(n) = (n^9 -16*n^8 +112*n^7 -448*n^6 +1120*n^5 -1791*n^4 +1786*n^3 -1012*n^2 +248*n)/6. (End)

A068245 1/6 the number of colorings of a 4 X 4 rhombic- or staggered- hexagonal array with n colors.

Original entry on oeis.org

1, 7616, 5141250, 552093440, 20631905875, 395001645696, 4771909547076, 41190314035200, 275192443300005, 1502690499112000, 6971521964029766, 28275884687022336, 102456840191225975, 337289521082456320, 1022310183284613000, 2883605488481550336, 7636012822945480521
Offset: 3

Views

Author

R. H. Hardin, Feb 24 2002

Keywords

Comments

Numbers for rhombic- and staggered- hexagonal arrays differ above 4 X 4.

Crossrefs

Programs

  • Magma
    [(n^11 -26*n^10 +310*n^9 -2240*n^8 +10915*n^7 -37726*n^6 +94576*n^5 -172395*n^4 +224588*n^3 -199854*n^2 +109788*n -28340)*n *(n-1)*(n-2)^3/6: n in [3..19]]; // Bruno Berselli, May 03 2012
  • Maple
    a:= n-> (-226720+ (1445104+ (-4304712+ (7968348+ (-10265148+ (9755858+ (-7068408+ (3975561+ (-1749715+ (602408+ (-160859+ (32703+ (-4898+ (510+ (-33+n)*n) *n) *n) *n) *n) *n) *n) *n) *n) *n) *n) *n) *n) *n) *n/6:
    seq(a(n), n=3..40); #  Alois P. Heinz, May 02 2012

Formula

From Alois P. Heinz, May 02 2012: (Start)
G.f.: -(7926831*x^13 +710120929*x^12 +16477733814*x^11 +144915014346*x^10 +569769493505*x^9 +1086745824783*x^8 +1040642122932*x^7 +499586289612*x^6 +115866023553*x^5 +11940350895*x^4 +465727286*x^3 +5011914*x^2 +7599*x+1) *x^3 / (x-1)^17.
a(n) = (n^16 -33*n^15 +510*n^14 -4898*n^13 +32703*n^12 -160859*n^11 +602408*n^10 -1749715*n^9 +3975561*n^8 -7068408*n^7 +9755858*n^6 -10265148*n^5 +7968348*n^4 -4304712*n^3 +1445104*n^2 -226720*n)/6. (End)

Extensions

Extended beyond a(15) by Alois P. Heinz, May 02 2012

A068254 1/4 the number of colorings of an n X n square array with 4 colors.

Original entry on oeis.org

1, 21, 2403, 1500183, 5110723191, 95013316876491, 9639473169171326643, 5336900216006709884938623, 16124704040675904181778734982451, 265865038636937159336134567410478299051
Offset: 1

Views

Author

R. H. Hardin, Feb 24 2002

Keywords

Crossrefs

Programs

Extensions

a(9)-a(10) from Alois P. Heinz, Apr 27 2012

A068255 1/5 the number of colorings of an n X n square array with 5 colors.

Original entry on oeis.org

1, 52, 28564, 165770032, 10164078082036, 6584229526795818280, 45062665956031451017237456, 3258395057698765483724093981321824, 2489232886416012985921659124731697904597044, 20091032492258710696689787524926465967570325433558752
Offset: 1

Views

Author

R. H. Hardin, Feb 24 2002

Keywords

Crossrefs

Programs

Extensions

a(8)-a(10) from Alois P. Heinz, Apr 27 2012
Showing 1-10 of 67 results. Next