cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A151724 First differences of A151723.

Original entry on oeis.org

0, 1, 6, 6, 18, 6, 18, 30, 42, 6, 18, 30, 54, 54, 42, 78, 90, 6, 18, 30, 54, 54, 54, 102, 150, 102, 42, 78, 138, 162, 114, 186, 186, 6, 18, 30, 54, 54, 54, 102, 150, 102, 54, 102, 174, 222, 198, 246, 342, 198, 42, 78, 138, 162, 162, 258, 402, 354, 162, 186
Offset: 0

Views

Author

David Applegate and N. J. A. Sloane, Jun 13 2009

Keywords

Examples

			When written as a triangle:
0,
1,
6,
6,18,
6,18,30,42,
6,18,30,54,54,42,78,90,
6,18,30,54,54,54,102,150,102,42,78,138,162,114,186,186,
...
Right border gives 0 together with A068293. - _Omar E. Pol_, Mar 19 2015
		

References

  • S. M. Ulam, On some mathematical problems connected with patterns of growth of figures, pp. 215-224 of R. E. Bellman, ed., Mathematical Problems in the Biological Sciences, Proc. Sympos. Applied Math., Vol. 14, Amer. Math. Soc., 1962 (see Example 6, page 224).

Crossrefs

Cf. A151723, A170898 (after dividing by 6), A170899, A169759.

A212209 Square array A(n,k), n>=1, k>=1, read by antidiagonals: A(n,k) is the number of n-colorings of the square diagonal grid graph DG_(k,k).

Original entry on oeis.org

1, 0, 2, 0, 0, 3, 0, 0, 0, 4, 0, 0, 0, 24, 5, 0, 0, 0, 72, 120, 6, 0, 0, 0, 168, 6720, 360, 7, 0, 0, 0, 360, 935040, 126360, 840, 8, 0, 0, 0, 744, 325061760, 265035240, 1128960, 1680, 9, 0, 0, 0, 1512, 283192323840, 3322711053720, 17160407040, 6510000, 3024, 10
Offset: 1

Views

Author

Alois P. Heinz, May 04 2012

Keywords

Comments

The square diagonal grid graph DG_(n,n) has n^2 = A000290(n) vertices and 2*(n-1)*(2*n-1) = A002943(n-1) edges; see A212208 for example. The chromatic polynomial of DG_(n,n) has n^2+1 = A002522(n) coefficients.
This graph is also called the king graph. - Andrew Howroyd, Jun 25 2017

Examples

			Square array A(n,k) begins:
  1,   0,       0,           0,                0, ...
  2,   0,       0,           0,                0, ...
  3,   0,       0,           0,                0, ...
  4,  24,      72,         168,              360, ...
  5, 120,    6720,      935040,        325061760, ...
  6, 360,  126360,   265035240,    3322711053720, ...
  7, 840, 1128960, 17160407040, 2949948395735040, ...
		

Crossrefs

Columns 1-5 give: A000027, A052762 = 24*A000332, 24*A068250, 24*A068251, 24*A068252.
Rows n=1-16 give: A000007, A000038, 3*A000007, 4*A068293, 5*A068294, 6*A068295, 7*A068296, 8*A068297, 9*A068298, 10*A068299, 11*A068300, 12*A068301, 13*A068302, 14*A068303, 15*A068304, 16*A068305.

A091344 a(n) = 2*3^n - 3*2^n + 1.

Original entry on oeis.org

0, 1, 7, 31, 115, 391, 1267, 3991, 12355, 37831, 115027, 348151, 1050595, 3164071, 9516787, 28599511, 85896835, 257887111, 774054547, 2322950071, 6970423075, 20914414951, 62749536307, 188261191831, 564808741315, 1694476555591
Offset: 0

Views

Author

Mario Catalani (mario.catalani(AT)unito.it), Jan 01 2004

Keywords

Comments

Starting with offset 1 = binomial transform of A068293: (1, 6, 18, 42, 90, ...) and double binomial transform of (1, 5, 7, 5, 7, 5, ...). - Gary W. Adamson, Jan 13 2009
Number of pairs (A,B) where A and B are nonempty subsets of {1,2,...,n} and one of these subsets is a subset of the other. - For the case that one of these subsets is a proper subset of the other see a(n+1) in A260217. - If empty subsets are included, see A027649 (all subsets) and A056182 (proper subsets). - Manfred Boergens, Aug 02 2023

Crossrefs

Programs

  • Maple
    a:=n->sum((3^(n-j-1)-2^(n-2-j))*12, j=0..n): seq(a(n), n=-1..24); # Zerinvary Lajos, Feb 11 2007
    with (combinat):a:=n->stirling2(n,3)+stirling2(n+1,3): seq(a(n), n=1..26); # Zerinvary Lajos, Oct 07 2007
  • Mathematica
    Table[Sum[i!i^2 StirlingS2[n, i](-1)^(n - i), {i, 1, n}], {n, 0, 30}]
    Table[2*3^n-3*2^n+1,{n,0,30}] (* or *) LinearRecurrence[{6,-11,6},{0,1,7},30] (* Harvey P. Dale, Dec 31 2013 *)

Formula

a(n) = Sum_{i=1..n} i!*i^2*Stirling2(n,i)*(-1)^(n-i).
From Christian Ballot via R. K. Guy, Jan 13 2009: (Start)
a(n) = 6*a(n-1) - 11*a(n-2) + 6*a(n-3);
G.f.: x*(1+x)/((1-x)*(2-x)*(3-x)). (End)
a(n) = 5*a(n-1) - 6*a(n-2) + 2, a(0)=0, a(1)=1. - Vincenzo Librandi, Nov 25 2010
E.g.f.: exp(x)*(1 - 3*exp(x) + 2*exp(2*x)). - Stefano Spezia, May 18 2024

Extensions

Edited by N. J. A. Sloane, Jan 13 2009 at the suggestion of R. K. Guy; the concise definition was provided by Vladeta Jovovic, Jan 01 2004

A175164 a(n) = 16*(2^n - 1).

Original entry on oeis.org

0, 16, 48, 112, 240, 496, 1008, 2032, 4080, 8176, 16368, 32752, 65520, 131056, 262128, 524272, 1048560, 2097136, 4194288, 8388592, 16777200, 33554416, 67108848, 134217712, 268435440
Offset: 0

Views

Author

Reinhard Zumkeller, Feb 28 2010

Keywords

Crossrefs

Sequences of the form m*(2^n - 1): A000225 (m=1), A000918 (m=2), A068156 (m=3), A028399 (m=4), A068293 (m=6), A159741 (m=8), this sequence (m=16), A175165 (m=32), A175166 (m=64).

Programs

  • Magma
    I:=[0,16]; [n le 2 select I[n] else 3*Self(n-1) - 2*Self(n-2): n in [1..41]]; // G. C. Greubel, Jul 08 2021
    
  • Mathematica
    16*(2^Range[0,40] - 1) (* G. C. Greubel, Jul 08 2021 *)
  • Python
    def A175164(n): return (1<Chai Wah Wu, Jun 27 2023
  • Sage
    [16*(2^n -1) for n in (0..40)] # G. C. Greubel, Jul 08 2021
    

Formula

a(n) = 2^(n+4) - 16.
a(n) = A173787(n+4, 4).
a(2*n) = A140504(n+2)*A028399(n).
a(n) = 3*a(n-1) - 2*a(n-2), a(0)=0, a(1)=16. - Vincenzo Librandi, Dec 28 2010
From G. C. Greubel, Jul 08 2021: (Start)
G.f.: 16*x/((1-x)*(1-2*x)).
E.g.f.: 16*(exp(2*x) - exp(x)). (End)

A175166 a(n) = 64*(2^n - 1).

Original entry on oeis.org

0, 64, 192, 448, 960, 1984, 4032, 8128, 16320, 32704, 65472, 131008, 262080, 524224, 1048512, 2097088, 4194240, 8388544, 16777152, 33554368, 67108800, 134217664, 268435392, 536870848, 1073741760
Offset: 0

Views

Author

Reinhard Zumkeller, Feb 28 2010

Keywords

Crossrefs

Sequences of the form m*(2^n - 1): A000225 (m=1), A000918 (m=2), A068156 (m=3), A028399 (m=4), A068293 (m=6), A159741 (m=8), A175164 (m=16), A175165 (m=32), this sequence (m=64).

Programs

  • Magma
    I:=[0,64]; [n le 2 select I[n] else 3*Self(n-1) - 2*Self(n-2): n in [1..41]]; // G. C. Greubel, Jul 08 2021
    
  • Mathematica
    LinearRecurrence[{3,-2},{0,64},30] (* Harvey P. Dale, Apr 08 2015 *)
  • Python
    def A175166(n): return (1<Chai Wah Wu, Jun 27 2023
  • Sage
    [64*(2^n -1) for n in (0..40)] # G. C. Greubel, Jul 08 2021
    

Formula

a(n) = 2^(n+6) - 64.
a(n) = A173787(n+6, 6).
a(2*n) = A175161(n)*A159741(n) for n > 0.
a(n) = 3*a(n-1) - 2*a(n-2), a(0)=0, a(1)=64. - Vincenzo Librandi, Dec 28 2010
From G. C. Greubel, Jul 08 2021: (Start)
G.f.: 64*x/((1-x)*(1-2*x)).
E.g.f.: 64*(exp(2*x) - exp(x)). (End)

A175165 a(n) = 32*(2^n - 1).

Original entry on oeis.org

0, 32, 96, 224, 480, 992, 2016, 4064, 8160, 16352, 32736, 65504, 131040, 262112, 524256, 1048544, 2097120, 4194272, 8388576, 16777184, 33554400, 67108832, 134217696, 268435424, 536870880
Offset: 0

Views

Author

Reinhard Zumkeller, Feb 28 2010

Keywords

Crossrefs

Sequences of the form m*(2^n - 1): A000225 (m=1), A000918 (m=2), A068156 (m=3), A028399 (m=4), A068293 (m=6), A159741 (m=8), A175164 (m=16), this sequence (m=32), A175166 (m=64).
Cf. A173787.

Programs

  • Magma
    I:=[0,32]; [n le 2 select I[n] else 3*Self(n-1) - 2*Self(n-2): n in [1..41]]; // G. C. Greubel, Jul 08 2021
    
  • Mathematica
    32(2^Range[0,30] -1) (* or *) LinearRecurrence[{3,-2},{0,32},30] (* Harvey P. Dale, Mar 23 2015 *)
  • Python
    def A175165(n): return (1<Chai Wah Wu, Jun 27 2023
  • Sage
    [32*(2^n -1) for n in (0..40)] # G. C. Greubel, Jul 08 2021
    

Formula

a(n) = 2^(n+5) - 32.
a(n) = A173787(n+5, 5).
a(n) = 3*a(n-1) - 2*a(n-2); a(0)=0, a(1)=32. - Vincenzo Librandi, Dec 28 2010
From G. C. Greubel, Jul 08 2021: (Start)
G.f.: 32*x/((1-x)*(1-2*x)).
E.g.f.: 32*(exp(2*x) - exp(x)). (End)

A212085 Square array A(n,k), n>=1, k>=1, read by antidiagonals: A(n,k) is the number of n-colorings of the complete bipartite graph K_(k,k).

Original entry on oeis.org

0, 0, 2, 0, 2, 6, 0, 2, 18, 12, 0, 2, 42, 84, 20, 0, 2, 90, 420, 260, 30, 0, 2, 186, 1812, 2420, 630, 42, 0, 2, 378, 7332, 18500, 9750, 1302, 56, 0, 2, 762, 28884, 127220, 121590, 30702, 2408, 72, 0, 2, 1530, 112740, 825860, 1324470, 583422, 81032, 4104, 90
Offset: 1

Views

Author

Alois P. Heinz, Apr 30 2012

Keywords

Comments

The complete bipartite graph K_(n,n) has 2*n vertices and n^2 = A000290(n) edges. The chromatic polynomial of K_(n,n) has 2*n+1 coefficients.
A(n,k) is the number of pairs of strings of length k over an alphabet of size n such that the strings do not share any letter. - Lin Zhangruiyu, Aug 19 2022

Examples

			A(3,1) = 6 because there are 6 3-colorings of the complete bipartite graph K_(1,1): 1-2, 1-3, 2-1, 2-3, 3-1, 3-2.
Square array A(n,k) begins:
   0,   0,    0,      0,       0,        0,         0, ...
   2,   2,    2,      2,       2,        2,         2, ...
   6,  18,   42,     90,     186,      378,       762, ...
  12,  84,  420,   1812,    7332,    28884,    112740, ...
  20, 260, 2420,  18500,  127220,   825860,   5191220, ...
  30, 630, 9750, 121590, 1324470, 13284630, 126657750, ...
		

Crossrefs

Rows n=1-3 give: A000004, A007395, A068293(k+1).
Columns k=1-2 give: A002378(n-1), A091940.

Programs

  • Maple
    A:= (n, k)-> add(Stirling2(k, j) *mul(n-i, i=0..j-1) *(n-j)^k, j=1..k):
    seq(seq(A(n, 1+d-n), n=1..d), d=1..12);
  • Mathematica
    a[n_, k_] := Sum[(-1)^j*(n-j)^k*Pochhammer[-n, j]*StirlingS2[k, j], {j, 1, k}]; Table[a[n-k, k], {n, 1, 11}, {k, n-1, 1, -1}] // Flatten (* Jean-François Alcover, Dec 11 2013 *)

Formula

A(n,k) = Sum_{j=1..k} (n-j)^k * S2(k,j) * Product_{i=0..j-1} (n-i).
A(n,n)/n = A282245(n).

A185739 Accumulation array of A185738, by antidiagonals.

Original entry on oeis.org

1, 3, 4, 6, 10, 11, 10, 18, 25, 26, 15, 28, 42, 56, 57, 21, 40, 62, 90, 119, 120, 28, 54, 85, 128, 186, 246, 247, 36, 70, 111, 170, 258, 378, 501, 502, 45, 88, 140, 216, 335, 516, 762, 1012, 1013, 55, 108, 172, 266, 417, 660, 1030, 1530, 2035, 2036, 66, 130, 207, 320, 504, 810, 1305, 2056, 3066, 4082, 4083, 78, 154, 245, 378, 596, 966, 1587, 2590, 4106, 6138, 8177, 8178, 91
Offset: 1

Views

Author

Clark Kimberling, Feb 02 2011

Keywords

Comments

This arrays is a member of a chain; see A185738.

Examples

			Northwest corner:
1....3....6....10....15
4....10...18...28....40
11...25...42...62....85
26...56...90...128...170
		

Crossrefs

Rows 1 to 4: A000217, A028562, A140675, 2*A098847
Columns 1 to 3: A000295, A000247, A068293.

Programs

  • Mathematica
    (* See A185738 *)
    f[n_, k_] := (k/2)*(4*(2^n - 1) + (k - 3)*n);
    TableForm[Table[f[n, k], {n, 1, 10}, {k, 1, 10}]]  (* Array A185739 *)
    Table[f[n - k + 1, k], {n, 10}, {k, n, 1, -1}] // Flatten (* G. C. Greubel, Jul 11 2017 *)

Formula

T(n,k) = k*(4*(2^n-1)+(k-3)*n), k>=1, n>=1.

A383900 Square array A(n,k), n>=0, k>=0, read by antidiagonals downwards, where column k is the expansion of Product_{j=0..k} (1 + j*x)/(1 - j*x).

Original entry on oeis.org

1, 1, 0, 1, 2, 0, 1, 6, 2, 0, 1, 12, 18, 2, 0, 1, 20, 72, 42, 2, 0, 1, 30, 200, 312, 90, 2, 0, 1, 42, 450, 1400, 1152, 186, 2, 0, 1, 56, 882, 4650, 8000, 3912, 378, 2, 0, 1, 72, 1568, 12642, 38250, 40520, 12672, 762, 2, 0, 1, 90, 2592, 29792, 142002, 271770, 190400, 39912, 1530, 2, 0
Offset: 0

Views

Author

Seiichi Manyama, May 14 2025

Keywords

Examples

			Square array begins:
  1, 1,   1,    1,     1,      1, ...
  0, 2,   6,   12,    20,     30, ...
  0, 2,  18,   72,   200,    450, ...
  0, 2,  42,  312,  1400,   4650, ...
  0, 2,  90, 1152,  8000,  38250, ...
  0, 2, 186, 3912, 40520, 271770, ...
		

Crossrefs

Columns k=0..4 give A000007, A040000, A068293(n+1), A383910, A383911.
Main diagonal gives A350366.
A(n,n-1) gives A383767.

Programs

  • PARI
    a(n, k) = sum(j=0, k, abs(stirling(k+1, j+1, 1))*stirling(j+n, k, 2));

Formula

A(n,k) = Sum_{j=0..k} |Stirling1(k+1,j+1)| * Stirling2(j+n,k).

A178923 Rectangular array T(m,k)= StirlingS2(k-1,m-1)*m! (The Coupon Collectors Problem).

Original entry on oeis.org

1, 0, 0, 0, 2, 0, 0, 2, 0, 0, 0, 2, 6, 0, 0, 0, 2, 18, 0, 0, 0, 0, 2, 42, 24, 0, 0, 0, 0, 2, 90, 144, 0, 0, 0, 0, 0, 2, 186, 600, 120, 0, 0, 0, 0, 0, 2, 378, 2160, 1200, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Geoffrey Critzer, Dec 29 2010

Keywords

Comments

T(m,k) is the number of functions f:{1,2,...}->{1,2,...,m} such that the image of f[{1,2,...,k}] is {1,2,...,m} but the image of f[{1,2,...,k-1}] is not.
T(m,k)/m^k is the probability that a collector of m different objects will require exactly k trials (uniform random selection with replacement) to complete the collection.

Examples

			   1   0   0   0   0     0     0      0       0 ...
   0   2   2   2   2     2     2      2       2 ...
   0   0   6  18  42    90   186    378     762 ...
   0   0   0  24 144   600  2160   7224   23184 ...
   0   0   0   0 120  1200  7800  42000  204120 ...
   0   0   0   0   0   720 10800 100800  756000 ...
   0   0   0   0   0     0  5040 105840 1340640 ...
   0   0   0   0   0     0     0  40320 1128960 ...
   0   0   0   0   0     0     0      0  362880 ...
		

Crossrefs

Cf. A068293 (row m=3), A000142 (diagonal), A001804 (subdiagonal).

Programs

  • Maple
    A178923 := proc(m,k)
        combinat[stirling2](k-1,m-1)*m! ;
    end proc:
    seq(seq(A178923(m,d-m),m=1..d-1),d=2..15) ; # R. J. Mathar, Jan 19 2024
  • Mathematica
    Table[Table[StirlingS2[k - 1, m - 1] m!, {k, 1, 10}], {m, 1, 10}] // Grid

Formula

O.g.f. for row m: m!*x^m/Product_{i=1...m-1}1-i*x.
Showing 1-10 of 11 results. Next