cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A212163 Square array A(n,k), n>=1, k>=1, read by antidiagonals: A(n,k) is the number of n-colorings of the rhombic hexagonal square grid graph RH_(k,k).

Original entry on oeis.org

1, 0, 2, 0, 0, 3, 0, 0, 6, 4, 0, 0, 6, 48, 5, 0, 0, 6, 1056, 180, 6, 0, 0, 6, 45696, 32940, 480, 7, 0, 0, 6, 4034304, 30847500, 393600, 1050, 8, 0, 0, 6, 739642368, 148039757460, 3312560640, 2735250, 2016, 9
Offset: 1

Views

Author

Alois P. Heinz, May 02 2012

Keywords

Comments

The rhombic hexagonal square grid graph RH_(n,n) has n^2 = A000290(n) vertices and (n-1)*(3*n-1) = A045944(n-1) edges; see A212162 for example. The chromatic polynomial of RH_(n,n) has n^2+1 = A002522(n) coefficients.
A differs from A212195 first at (n,k) = (4,5): A(4,5) = 4034304, A212195(4,5) = 4038432.

Examples

			Square array A(n,k) begins:
  1,    0,       0,            0,                 0, ...
  2,    0,       0,            0,                 0, ...
  3,    6,       6,            6,                 6, ...
  4,   48,    1056,        45696,           4034304, ...
  5,  180,   32940,     30847500,      148039757460, ...
  6,  480,  393600,   3312560640,   286169360240640, ...
  7, 1050, 2735250, 123791435250, 97337270132408250, ...
		

Crossrefs

Columns k=1-6 give: A000027, A047927(n) = 6*A002417(n-2), 6*A068244, 6*A068245, 6*A068246, 6*A068247.
Rows n=1-15 give: A000007, A000038, A040006, 4*A068271, 5*A068272, 6*A068273, 7*A068274, 8*A068275, 9*A068276, 10*A068277, 11*A068278, 12*A068279, 13*A068280, 14*A068281, 15*A068282.

A208050 T(n,k)=Number of nXk 0..3 arrays with new values 0..3 introduced in row major order and no element equal to any horizontal, vertical or antidiagonal neighbor (colorings ignoring permutations of colors).

Original entry on oeis.org

1, 1, 1, 2, 2, 2, 5, 8, 8, 5, 14, 32, 44, 32, 14, 41, 128, 244, 244, 128, 41, 122, 512, 1356, 1904, 1356, 512, 122, 365, 2048, 7540, 14976, 14976, 7540, 2048, 365, 1094, 8192, 41932, 118096, 168096, 118096, 41932, 8192, 1094, 3281, 32768, 233204, 931968
Offset: 1

Views

Author

R. H. Hardin, Feb 22 2012

Keywords

Comments

Equivalently, the number of colorings in the rhombic hexagonal square grid graph RH_(n,k) using 4 colors up to permutation of the colors. - Andrew Howroyd, Jun 25 2017

Examples

			Table starts
...1....1......2.......5........14.........41..........122...........365
...1....2......8......32.......128........512.........2048..........8192
...2....8.....44.....244......1356.......7540........41932........233204
...5...32....244....1904.....14976.....118096.......931968.......7356288
..14..128...1356...14976....168096....1897888.....21472544.....243113056
..41..512...7540..118096...1897888...30818432....502504448....8206614784
.122.2048..41932..931968..21472544..502504448..11838995200..279733684992
.365.8192.233204.7356288.243113056.8206614784.279733684992.9578237457408
...
Some solutions for n=4 k=3
..0..1..0....0..1..2....0..1..0....0..1..0....0..1..2....0..1..2....0..1..2
..2..3..1....2..3..0....2..3..1....2..3..1....2..0..3....2..3..0....2..0..3
..1..2..0....0..1..2....0..2..3....0..2..3....1..2..1....1..2..1....1..2..0
..3..1..2....2..3..1....1..0..1....3..0..2....3..0..3....3..0..2....3..1..2
		

Crossrefs

Columns 1-7 are A007051(n-2), A004171(n-2), A208044, A208046, A208047-A208049.
Main diagonal is A208045.

A208054 T(n,k) = Number of n X k nonnegative integer arrays with new values 0 upwards introduced in row major order and no element equal to any horizontal, vertical or antidiagonal neighbor (colorings ignoring permutations of colors).

Original entry on oeis.org

1, 1, 1, 2, 2, 2, 5, 15, 15, 5, 15, 203, 716, 203, 15, 52, 4140, 83440, 83440, 4140, 52, 203, 115975, 18171918, 112073062, 18171918, 115975, 203, 877, 4213597, 6423127757, 346212384169, 346212384169, 6423127757, 4213597, 877, 4140, 190899322
Offset: 1

Views

Author

R. H. Hardin, Feb 22 2012

Keywords

Comments

Equivalently, the number of colorings in the rhombic hexagonal square grid graph RH_(n,k) using any number of colors up to permutation of the colors. - Andrew Howroyd, Jun 25 2017

Examples

			Table starts
...1.........1.............2................5................15
...1.........2............15..............203..............4140
...2........15...........716............83440..........18171918
...5.......203.........83440........112073062......346212384169
..15......4140......18171918.....346212384169.18633407199331522
..52....115975....6423127757.2043836452962923
.203...4213597.3376465219485
.877.190899322
...
Some solutions for n=4 k=3
..0..1..0....0..1..0....0..1..0....0..1..0....0..1..2....0..1..0....0..1..0
..2..3..1....2..3..4....2..3..2....2..3..1....2..3..0....2..3..1....2..3..2
..4..2..4....0..5..0....0..4..0....0..4..5....4..5..3....4..5..3....0..1..4
..0..5..0....1..2..1....1..2..1....5..3..4....0..1..0....0..6..4....2..0..1
		

Crossrefs

Columns 1-5 are A000110(n-1), A020557(n-1), A208051, A208052, A208053.
Showing 1-3 of 3 results.