A212163
Square array A(n,k), n>=1, k>=1, read by antidiagonals: A(n,k) is the number of n-colorings of the rhombic hexagonal square grid graph RH_(k,k).
Original entry on oeis.org
1, 0, 2, 0, 0, 3, 0, 0, 6, 4, 0, 0, 6, 48, 5, 0, 0, 6, 1056, 180, 6, 0, 0, 6, 45696, 32940, 480, 7, 0, 0, 6, 4034304, 30847500, 393600, 1050, 8, 0, 0, 6, 739642368, 148039757460, 3312560640, 2735250, 2016, 9
Offset: 1
Square array A(n,k) begins:
1, 0, 0, 0, 0, ...
2, 0, 0, 0, 0, ...
3, 6, 6, 6, 6, ...
4, 48, 1056, 45696, 4034304, ...
5, 180, 32940, 30847500, 148039757460, ...
6, 480, 393600, 3312560640, 286169360240640, ...
7, 1050, 2735250, 123791435250, 97337270132408250, ...
Rows n=1-15 give:
A000007,
A000038,
A040006, 4*
A068271, 5*
A068272, 6*
A068273, 7*
A068274, 8*
A068275, 9*
A068276, 10*
A068277, 11*
A068278, 12*
A068279, 13*
A068280, 14*
A068281, 15*
A068282.
A208054
T(n,k) = Number of n X k nonnegative integer arrays with new values 0 upwards introduced in row major order and no element equal to any horizontal, vertical or antidiagonal neighbor (colorings ignoring permutations of colors).
Original entry on oeis.org
1, 1, 1, 2, 2, 2, 5, 15, 15, 5, 15, 203, 716, 203, 15, 52, 4140, 83440, 83440, 4140, 52, 203, 115975, 18171918, 112073062, 18171918, 115975, 203, 877, 4213597, 6423127757, 346212384169, 346212384169, 6423127757, 4213597, 877, 4140, 190899322
Offset: 1
Table starts
...1.........1.............2................5................15
...1.........2............15..............203..............4140
...2........15...........716............83440..........18171918
...5.......203.........83440........112073062......346212384169
..15......4140......18171918.....346212384169.18633407199331522
..52....115975....6423127757.2043836452962923
.203...4213597.3376465219485
.877.190899322
...
Some solutions for n=4 k=3
..0..1..0....0..1..0....0..1..0....0..1..0....0..1..2....0..1..0....0..1..0
..2..3..1....2..3..4....2..3..2....2..3..1....2..3..0....2..3..1....2..3..2
..4..2..4....0..5..0....0..4..0....0..4..5....4..5..3....4..5..3....0..1..4
..0..5..0....1..2..1....1..2..1....5..3..4....0..1..0....0..6..4....2..0..1
A208044
Number of n X 3 0..3 arrays with new values 0..3 introduced in row major order and no element equal to any horizontal, vertical or antidiagonal neighbor (colorings ignoring permutations of colors).
Original entry on oeis.org
2, 8, 44, 244, 1356, 7540, 41932, 233204, 1296972, 7213172, 40116428, 223109620, 1240835916, 6900974452, 38380133836, 213453141236, 1187130917964, 6602291295860, 36718991727308, 204214611724276, 1135750348251468
Offset: 1
Some solutions for n=4:
0 1 0 0 1 0 0 1 2 0 1 0 0 1 2 0 1 0 0 1 2
2 3 2 2 3 1 2 0 3 2 3 1 2 3 0 2 3 1 2 3 0
1 0 1 1 2 0 3 1 2 0 2 0 0 1 3 0 2 3 0 1 2
2 3 2 3 1 2 0 3 1 1 3 1 2 0 1 3 1 2 2 3 1
A208046
Number of n X 4 0..3 arrays with new values 0..3 introduced in row major order and no element equal to any horizontal, vertical or antidiagonal neighbor (colorings ignoring permutations of colors).
Original entry on oeis.org
5, 32, 244, 1904, 14976, 118096, 931968, 7356288, 58068800, 458389760, 3618506752, 28564366592, 225486229504, 1779981604864, 14051122574336, 110919150841856, 875592537571328, 6911901929525248, 54562352063938560, 430713614487224320
Offset: 1
Some solutions for n=4:
0 1 2 1 0 1 2 0 0 1 0 1 0 1 2 3 0 1 2 3
2 3 0 2 2 0 1 2 2 3 2 3 2 3 0 1 2 3 0 1
1 2 1 3 1 3 0 1 0 1 0 1 0 1 3 0 1 2 3 2
3 0 2 0 2 1 2 3 2 3 2 0 2 0 2 1 3 1 0 1
A208047
Number of nX5 0..3 arrays with new values 0..3 introduced in row major order and no element equal to any horizontal, vertical or antidiagonal neighbor (colorings ignoring permutations of colors).
Original entry on oeis.org
14, 128, 1356, 14976, 168096, 1897888, 21472544, 243113056, 2753187616, 31181409632, 353155643424, 3999817236576, 45301793546528, 513087070702432, 5811214258319904, 65817707844947552, 745450199930022688
Offset: 1
Some solutions for n=4
..0..1..0..1..2....0..1..0..1..0....0..1..0..1..2....0..1..0..1..0
..2..3..2..3..0....2..3..2..3..2....3..2..3..0..3....2..3..2..3..1
..0..1..0..1..2....0..1..0..1..3....1..0..1..2..0....1..0..1..0..2
..3..2..3..0..3....2..3..2..0..1....2..3..0..1..2....2..3..2..1..0
A208049
Number of nX7 0..3 arrays with new values 0..3 introduced in row major order and no element equal to any horizontal, vertical or antidiagonal neighbor (colorings ignoring permutations of colors).
Original entry on oeis.org
122, 2048, 41932, 931968, 21472544, 502504448, 11838995200, 279733684992, 6617787903744, 156641740131072, 3708483510235904, 87806041737925888, 2079067090247547648, 49228778299543155968, 1165660962446546688768
Offset: 1
Some solutions for n=4
..0..1..2..3..1..2..3....0..1..2..3..0..1..2....0..1..0..1..2..3..2
..2..0..1..0..3..1..0....2..0..1..2..3..0..1....2..3..2..0..1..0..3
..3..2..3..2..0..2..1....3..2..3..0..1..2..3....0..1..3..2..3..1..2
..0..1..0..1..3..0..2....0..1..2..3..0..1..0....2..0..1..0..2..3..0
A208045
Number of n X n 0..3 arrays with new values 0..3 introduced in row major order and no element equal to any horizontal, vertical or antidiagonal neighbor (colorings ignoring permutations of colors).
Original entry on oeis.org
1, 2, 44, 1904, 168096, 30818432, 11838995200, 9578237457408, 16372889877477376, 59262411624914853888, 454901302416508366209024, 7413673375795915677473636352
Offset: 1
Some solutions for n=4
..0..1..2..1....0..1..2..1....0..1..2..3....0..1..0..1....0..1..2..1
..2..0..3..2....2..3..0..3....3..0..1..0....2..3..2..3....2..3..0..2
..3..2..1..0....0..1..2..0....1..2..3..1....0..1..0..1....0..2..1..3
..0..3..2..1....2..3..1..3....3..1..0..2....2..3..2..0....1..0..2..1
A208048
Number of nX6 0..3 arrays with new values 0..3 introduced in row major order and no element equal to any horizontal, vertical or antidiagonal neighbor (colorings ignoring permutations of colors).
Original entry on oeis.org
41, 512, 7540, 118096, 1897888, 30818432, 502504448, 8206614784, 134107752704, 2192020679040, 35832132655104, 585752326535168, 9575474013944320, 156533905282970624, 2558923378953086464, 41831786939400151040
Offset: 1
Some solutions for n=4
..0..1..2..0..2..3....0..1..2..0..1..3....0..1..2..1..3..0....0..1..2..3..0..1
..3..0..1..3..0..2....2..0..1..2..0..1....3..0..3..2..1..3....3..0..1..2..3..2
..1..2..0..2..3..0....3..2..3..1..2..3....1..2..1..3..0..2....1..2..0..1..0..3
..3..1..3..0..1..2....1..0..2..3..0..1....3..0..2..1..3..1....3..1..2..3..1..0
Showing 1-8 of 8 results.
Comments