cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A212163 Square array A(n,k), n>=1, k>=1, read by antidiagonals: A(n,k) is the number of n-colorings of the rhombic hexagonal square grid graph RH_(k,k).

Original entry on oeis.org

1, 0, 2, 0, 0, 3, 0, 0, 6, 4, 0, 0, 6, 48, 5, 0, 0, 6, 1056, 180, 6, 0, 0, 6, 45696, 32940, 480, 7, 0, 0, 6, 4034304, 30847500, 393600, 1050, 8, 0, 0, 6, 739642368, 148039757460, 3312560640, 2735250, 2016, 9
Offset: 1

Views

Author

Alois P. Heinz, May 02 2012

Keywords

Comments

The rhombic hexagonal square grid graph RH_(n,n) has n^2 = A000290(n) vertices and (n-1)*(3*n-1) = A045944(n-1) edges; see A212162 for example. The chromatic polynomial of RH_(n,n) has n^2+1 = A002522(n) coefficients.
A differs from A212195 first at (n,k) = (4,5): A(4,5) = 4034304, A212195(4,5) = 4038432.

Examples

			Square array A(n,k) begins:
  1,    0,       0,            0,                 0, ...
  2,    0,       0,            0,                 0, ...
  3,    6,       6,            6,                 6, ...
  4,   48,    1056,        45696,           4034304, ...
  5,  180,   32940,     30847500,      148039757460, ...
  6,  480,  393600,   3312560640,   286169360240640, ...
  7, 1050, 2735250, 123791435250, 97337270132408250, ...
		

Crossrefs

Columns k=1-6 give: A000027, A047927(n) = 6*A002417(n-2), 6*A068244, 6*A068245, 6*A068246, 6*A068247.
Rows n=1-15 give: A000007, A000038, A040006, 4*A068271, 5*A068272, 6*A068273, 7*A068274, 8*A068275, 9*A068276, 10*A068277, 11*A068278, 12*A068279, 13*A068280, 14*A068281, 15*A068282.

A208054 T(n,k) = Number of n X k nonnegative integer arrays with new values 0 upwards introduced in row major order and no element equal to any horizontal, vertical or antidiagonal neighbor (colorings ignoring permutations of colors).

Original entry on oeis.org

1, 1, 1, 2, 2, 2, 5, 15, 15, 5, 15, 203, 716, 203, 15, 52, 4140, 83440, 83440, 4140, 52, 203, 115975, 18171918, 112073062, 18171918, 115975, 203, 877, 4213597, 6423127757, 346212384169, 346212384169, 6423127757, 4213597, 877, 4140, 190899322
Offset: 1

Views

Author

R. H. Hardin, Feb 22 2012

Keywords

Comments

Equivalently, the number of colorings in the rhombic hexagonal square grid graph RH_(n,k) using any number of colors up to permutation of the colors. - Andrew Howroyd, Jun 25 2017

Examples

			Table starts
...1.........1.............2................5................15
...1.........2............15..............203..............4140
...2........15...........716............83440..........18171918
...5.......203.........83440........112073062......346212384169
..15......4140......18171918.....346212384169.18633407199331522
..52....115975....6423127757.2043836452962923
.203...4213597.3376465219485
.877.190899322
...
Some solutions for n=4 k=3
..0..1..0....0..1..0....0..1..0....0..1..0....0..1..2....0..1..0....0..1..0
..2..3..1....2..3..4....2..3..2....2..3..1....2..3..0....2..3..1....2..3..2
..4..2..4....0..5..0....0..4..0....0..4..5....4..5..3....4..5..3....0..1..4
..0..5..0....1..2..1....1..2..1....5..3..4....0..1..0....0..6..4....2..0..1
		

Crossrefs

Columns 1-5 are A000110(n-1), A020557(n-1), A208051, A208052, A208053.

A208044 Number of n X 3 0..3 arrays with new values 0..3 introduced in row major order and no element equal to any horizontal, vertical or antidiagonal neighbor (colorings ignoring permutations of colors).

Original entry on oeis.org

2, 8, 44, 244, 1356, 7540, 41932, 233204, 1296972, 7213172, 40116428, 223109620, 1240835916, 6900974452, 38380133836, 213453141236, 1187130917964, 6602291295860, 36718991727308, 204214611724276, 1135750348251468
Offset: 1

Views

Author

R. H. Hardin, Feb 22 2012

Keywords

Comments

Column 3 of A208050.

Examples

			Some solutions for n=4:
  0 1 0   0 1 0   0 1 2   0 1 0   0 1 2   0 1 0   0 1 2
  2 3 2   2 3 1   2 0 3   2 3 1   2 3 0   2 3 1   2 3 0
  1 0 1   1 2 0   3 1 2   0 2 0   0 1 3   0 2 3   0 1 2
  2 3 2   3 1 2   0 3 1   1 3 1   2 0 1   3 1 2   2 3 1
		

Crossrefs

Cf. A208050.

Formula

Empirical: a(n) = 7*a(n-1) - 8*a(n-2) for n>3.
Conjectures from Colin Barker, Mar 06 2018: (Start)
G.f.: 2*x*(1 - x)*(1 - 2*x) / (1 - 7*x + 8*x^2).
a(n) = (2^(-5-n)*((7-sqrt(17))^n*(-13+5*sqrt(17)) + (7+sqrt(17))^n*(13+5*sqrt(17)))) / sqrt(17) for n>1.
(End)

A208046 Number of n X 4 0..3 arrays with new values 0..3 introduced in row major order and no element equal to any horizontal, vertical or antidiagonal neighbor (colorings ignoring permutations of colors).

Original entry on oeis.org

5, 32, 244, 1904, 14976, 118096, 931968, 7356288, 58068800, 458389760, 3618506752, 28564366592, 225486229504, 1779981604864, 14051122574336, 110919150841856, 875592537571328, 6911901929525248, 54562352063938560, 430713614487224320
Offset: 1

Views

Author

R. H. Hardin, Feb 22 2012

Keywords

Comments

Column 4 of A208050.

Examples

			Some solutions for n=4:
  0 1 2 1    0 1 2 0    0 1 0 1    0 1 2 3    0 1 2 3
  2 3 0 2    2 0 1 2    2 3 2 3    2 3 0 1    2 3 0 1
  1 2 1 3    1 3 0 1    0 1 0 1    0 1 3 0    1 2 3 2
  3 0 2 0    2 1 2 3    2 3 2 0    2 0 2 1    3 1 0 1
		

Crossrefs

Cf. A208050.

Formula

Empirical: a(n) = 12*a(n-1) - 40*a(n-2) + 68*a(n-3) - 64*a(n-4) for n>5.
Empirical g.f.: x*(5 - 28*x + 60*x^2 - 84*x^3 + 32*x^4) / (1 - 12*x + 40*x^2 - 68*x^3 + 64*x^4). - Colin Barker, Mar 06 2018

A208047 Number of nX5 0..3 arrays with new values 0..3 introduced in row major order and no element equal to any horizontal, vertical or antidiagonal neighbor (colorings ignoring permutations of colors).

Original entry on oeis.org

14, 128, 1356, 14976, 168096, 1897888, 21472544, 243113056, 2753187616, 31181409632, 353155643424, 3999817236576, 45301793546528, 513087070702432, 5811214258319904, 65817707844947552, 745450199930022688
Offset: 1

Views

Author

R. H. Hardin Feb 22 2012

Keywords

Comments

Column 5 of A208050

Examples

			Some solutions for n=4
..0..1..0..1..2....0..1..0..1..0....0..1..0..1..2....0..1..0..1..0
..2..3..2..3..0....2..3..2..3..2....3..2..3..0..3....2..3..2..3..1
..0..1..0..1..2....0..1..0..1..3....1..0..1..2..0....1..0..1..0..2
..3..2..3..0..3....2..3..2..0..1....2..3..0..1..2....2..3..2..1..0
		

Formula

Empirical: a(n) = 22*a(n-1) -177*a(n-2) +832*a(n-3) -2664*a(n-4) +5408*a(n-5) -4544*a(n-6) -7936*a(n-7) +24064*a(n-8) -16384*a(n-9) for n>10

A208049 Number of nX7 0..3 arrays with new values 0..3 introduced in row major order and no element equal to any horizontal, vertical or antidiagonal neighbor (colorings ignoring permutations of colors).

Original entry on oeis.org

122, 2048, 41932, 931968, 21472544, 502504448, 11838995200, 279733684992, 6617787903744, 156641740131072, 3708483510235904, 87806041737925888, 2079067090247547648, 49228778299543155968, 1165660962446546688768
Offset: 1

Views

Author

R. H. Hardin Feb 22 2012

Keywords

Comments

Column 7 of A208050

Examples

			Some solutions for n=4
..0..1..2..3..1..2..3....0..1..2..3..0..1..2....0..1..0..1..2..3..2
..2..0..1..0..3..1..0....2..0..1..2..3..0..1....2..3..2..0..1..0..3
..3..2..3..2..0..2..1....3..2..3..0..1..2..3....0..1..3..2..3..1..2
..0..1..0..1..3..0..2....0..1..2..3..0..1..0....2..0..1..0..2..3..0
		

Formula

Empirical: a(n) = 75*a(n-1) -2554*a(n-2) +55718*a(n-3) -900373*a(n-4) +11540175*a(n-5) -120646224*a(n-6) +1032906704*a(n-7) -7143273200*a(n-8) +38487096736*a(n-9) -148139743168*a(n-10) +301384072128*a(n-11) +434395534080*a(n-12) -4212812674816*a(n-13) -6055937053184*a(n-14) +188862038718976*a(n-15) -1113928611287040*a(n-16) +3311133232840704*a(n-17) -2101437137223680*a(n-18) -32416286559526912*a(n-19) +220131231030444032*a(n-20) -992034773109800960*a(n-21) +3717529494924165120*a(n-22) -11794027245416480768*a(n-23) +31236993687432921088*a(n-24) -70339147326082842624*a(n-25) +154801537571326263296*a(n-26) -448746548849001103360*a(n-27) +1717656393065237053440*a(n-28) -6299441128934805078016*a(n-29) +18664452298317869613056*a(n-30) -42448339422308433133568*a(n-31) +70184786763815892025344*a(n-32) -64759214749331813826560*a(n-33) -65052874836065503936512*a(n-34) +487617470914554383826944*a(n-35) -1485610864045675360813056*a(n-36) +3640029148467676101738496*a(n-37) -8283595658363681883815936*a(n-38) +17664539130299538596691968*a(n-39) -33111040019545470867079168*a(n-40) +49915764398968934926123008*a(n-41) -53360782694992243014500352*a(n-42) +27154724025092859785904128*a(n-43) +27407517485303035101970432*a(n-44) -87711501058877861501337600*a(n-45) +139238385451601130420174848*a(n-46) -222221580176017612232196096*a(n-47) +397056573879679769567559680*a(n-48) -556634782068810820628774912*a(n-49) +453347182355485940514816000*a(n-50) -154742504910672534362390528*a(n-51) for n>52

A208045 Number of n X n 0..3 arrays with new values 0..3 introduced in row major order and no element equal to any horizontal, vertical or antidiagonal neighbor (colorings ignoring permutations of colors).

Original entry on oeis.org

1, 2, 44, 1904, 168096, 30818432, 11838995200, 9578237457408, 16372889877477376, 59262411624914853888, 454901302416508366209024, 7413673375795915677473636352
Offset: 1

Views

Author

R. H. Hardin Feb 22 2012

Keywords

Comments

Diagonal of A208050

Examples

			Some solutions for n=4
..0..1..2..1....0..1..2..1....0..1..2..3....0..1..0..1....0..1..2..1
..2..0..3..2....2..3..0..3....3..0..1..0....2..3..2..3....2..3..0..2
..3..2..1..0....0..1..2..0....1..2..3..1....0..1..0..1....0..2..1..3
..0..3..2..1....2..3..1..3....3..1..0..2....2..3..2..0....1..0..2..1
		

Programs

A208048 Number of nX6 0..3 arrays with new values 0..3 introduced in row major order and no element equal to any horizontal, vertical or antidiagonal neighbor (colorings ignoring permutations of colors).

Original entry on oeis.org

41, 512, 7540, 118096, 1897888, 30818432, 502504448, 8206614784, 134107752704, 2192020679040, 35832132655104, 585752326535168, 9575474013944320, 156533905282970624, 2558923378953086464, 41831786939400151040
Offset: 1

Views

Author

R. H. Hardin Feb 22 2012

Keywords

Comments

Column 6 of A208050

Examples

			Some solutions for n=4
..0..1..2..0..2..3....0..1..2..0..1..3....0..1..2..1..3..0....0..1..2..3..0..1
..3..0..1..3..0..2....2..0..1..2..0..1....3..0..3..2..1..3....3..0..1..2..3..2
..1..2..0..2..3..0....3..2..3..1..2..3....1..2..1..3..0..2....1..2..0..1..0..3
..3..1..3..0..1..2....1..0..2..3..0..1....3..0..2..1..3..1....3..1..2..3..1..0
		

Formula

Empirical: a(n) = 40*a(n-1) -672*a(n-2) +7048*a(n-3) -53920*a(n-4) +315080*a(n-5) -1388592*a(n-6) +4290880*a(n-7) -7204704*a(n-8) -5415680*a(n-9) +63216624*a(n-10) -131003904*a(n-11) -9639424*a(n-12) +571912192*a(n-13) -1570279424*a(n-14) +4233822208*a(n-15) -11382816768*a(n-16) +22231908352*a(n-17) -31692161024*a(n-18) +37178310656*a(n-19) -34628173824*a(n-20) +17179869184*a(n-21) for n>22
Showing 1-8 of 8 results.