cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 20 results. Next

A212162 Triangle T(n,k), n>=1, 0<=k<=n^2, read by rows: row n gives the coefficients of the chromatic polynomial of the rhombic hexagonal square grid graph RH_(n,n), highest powers first.

Original entry on oeis.org

1, 0, 1, -5, 8, -4, 0, 1, -16, 112, -448, 1120, -1791, 1786, -1012, 248, 0, 1, -33, 510, -4898, 32703, -160859, 602408, -1749715, 3975561, -7068408, 9755858, -10265148, 7968348, -4304712, 1445104, -226720, 0, 1, -56, 1508, -25992, 321994, -3051871, 23000726, -141421592, 722137763, -3101089711
Offset: 1

Views

Author

Alois P. Heinz, May 02 2012

Keywords

Comments

T differs from A212194 first at (n,k) = (5,10): T(5,10) = -3101089711, A212194(5,10) = -3101089710.
The rhombic hexagonal square grid graph RH_(n,n) has n^2 = A000290(n) vertices and (n-1)*(3*n-1) = A045944(n-1) edges. The chromatic polynomial of RH_(n,n) has n^2+1 = A002522(n) coefficients.

Examples

			3 example graphs:                        o--o--o
.                                        | /| /|
.                                        |/ |/ |
.                            o--o        o--o--o
.                            | /|        | /| /|
.                            |/ |        |/ |/ |
.               o            o--o        o--o--o
Graph:       RH_(1,1)      RH_(2,2)      RH_(3,3)
Vertices:       1             4             9
Edges:          0             5            16
The rhombic hexagonal square grid graph RH_(2,2) has chromatic polynomial q*(q-1)*(q-2)^2 = q^4 -5*q^3 +8*q^2 -4*q => row 2 = [1, -5, 8, -4, 0].
Triangle T(n,k) begins:
1,    0;
1,   -5,     8,      -4,        0;
1,  -16,   112,    -448,     1120,      -1791, ...
1,  -33,   510,   -4898,    32703,    -160859, ...
1,  -56,  1508,  -25992,   321994,   -3051871, ... , -3101089711, ...
1,  -85,  3520,  -94620,  1855860,  -28306676, ...
1, -120,  7068, -272344,  7720110, -171656543, ...
1, -161, 12782, -667058, 25738055, -783003395, ...
		

Crossrefs

Columns 1-2 give: A000012, (-1)*A045944(n-1).
Row sums (for n>1) and last elements of rows give: A000004, row lengths give: A002522.

A212195 Square array A(n,k), n>=1, k>=1, read by antidiagonals: A(n,k) is the number of n-colorings of the staggered hexagonal square grid graph SH_(k,k).

Original entry on oeis.org

1, 0, 2, 0, 0, 3, 0, 0, 6, 4, 0, 0, 6, 48, 5, 0, 0, 6, 1056, 180, 6, 0, 0, 6, 45696, 32940, 480, 7, 0, 0, 6, 4038432, 30847500, 393600, 1050, 8, 0, 0, 6, 743601024, 148046704020, 3312560640, 2735250, 2016, 9
Offset: 1

Views

Author

Alois P. Heinz, May 03 2012

Keywords

Comments

The staggered hexagonal square grid graph SH_(n,n) has n^2 = A000290(n) vertices and (n-1)*(3*n-1) = A045944(n-1) edges; see A212194 for example. The chromatic polynomial of SH_(n,n) has n^2+1 = A002522(n) coefficients.
A differs from A212163 first at (n,k) = (4,5): A(4,5) = 4038432, A212163(4,5) = 4034304.

Examples

			Square array A(n,k) begins:
  1,    0,       0,            0,                 0, ...
  2,    0,       0,            0,                 0, ...
  3,    6,       6,            6,                 6, ...
  4,   48,    1056,        45696,           4038432, ...
  5,  180,   32940,     30847500,      148046704020, ...
  6,  480,  393600,   3312560640,   286170443437440, ...
  7, 1050, 2735250, 123791435250, 97337320223288250, ...
		

Crossrefs

Columns k=1-6 give: A000027, A047927(n) = 6*A002417(n-2), 6*A068244, 6*A068245, 6*A068248, 6*A068249.
Rows n=1-10, 16-18 give: A000007, A000038, A040006, 4*A068283, 5*A068284, 6*A068285, 7*A068286, 8*A068287, 9*A068288, 10*A068289, 16*A068290, 17*A068291, 18*A068292.

A208050 T(n,k)=Number of nXk 0..3 arrays with new values 0..3 introduced in row major order and no element equal to any horizontal, vertical or antidiagonal neighbor (colorings ignoring permutations of colors).

Original entry on oeis.org

1, 1, 1, 2, 2, 2, 5, 8, 8, 5, 14, 32, 44, 32, 14, 41, 128, 244, 244, 128, 41, 122, 512, 1356, 1904, 1356, 512, 122, 365, 2048, 7540, 14976, 14976, 7540, 2048, 365, 1094, 8192, 41932, 118096, 168096, 118096, 41932, 8192, 1094, 3281, 32768, 233204, 931968
Offset: 1

Views

Author

R. H. Hardin, Feb 22 2012

Keywords

Comments

Equivalently, the number of colorings in the rhombic hexagonal square grid graph RH_(n,k) using 4 colors up to permutation of the colors. - Andrew Howroyd, Jun 25 2017

Examples

			Table starts
...1....1......2.......5........14.........41..........122...........365
...1....2......8......32.......128........512.........2048..........8192
...2....8.....44.....244......1356.......7540........41932........233204
...5...32....244....1904.....14976.....118096.......931968.......7356288
..14..128...1356...14976....168096....1897888.....21472544.....243113056
..41..512...7540..118096...1897888...30818432....502504448....8206614784
.122.2048..41932..931968..21472544..502504448..11838995200..279733684992
.365.8192.233204.7356288.243113056.8206614784.279733684992.9578237457408
...
Some solutions for n=4 k=3
..0..1..0....0..1..2....0..1..0....0..1..0....0..1..2....0..1..2....0..1..2
..2..3..1....2..3..0....2..3..1....2..3..1....2..0..3....2..3..0....2..0..3
..1..2..0....0..1..2....0..2..3....0..2..3....1..2..1....1..2..1....1..2..0
..3..1..2....2..3..1....1..0..1....3..0..2....3..0..3....3..0..2....3..1..2
		

Crossrefs

Columns 1-7 are A007051(n-2), A004171(n-2), A208044, A208046, A208047-A208049.
Main diagonal is A208045.

A208054 T(n,k) = Number of n X k nonnegative integer arrays with new values 0 upwards introduced in row major order and no element equal to any horizontal, vertical or antidiagonal neighbor (colorings ignoring permutations of colors).

Original entry on oeis.org

1, 1, 1, 2, 2, 2, 5, 15, 15, 5, 15, 203, 716, 203, 15, 52, 4140, 83440, 83440, 4140, 52, 203, 115975, 18171918, 112073062, 18171918, 115975, 203, 877, 4213597, 6423127757, 346212384169, 346212384169, 6423127757, 4213597, 877, 4140, 190899322
Offset: 1

Views

Author

R. H. Hardin, Feb 22 2012

Keywords

Comments

Equivalently, the number of colorings in the rhombic hexagonal square grid graph RH_(n,k) using any number of colors up to permutation of the colors. - Andrew Howroyd, Jun 25 2017

Examples

			Table starts
...1.........1.............2................5................15
...1.........2............15..............203..............4140
...2........15...........716............83440..........18171918
...5.......203.........83440........112073062......346212384169
..15......4140......18171918.....346212384169.18633407199331522
..52....115975....6423127757.2043836452962923
.203...4213597.3376465219485
.877.190899322
...
Some solutions for n=4 k=3
..0..1..0....0..1..0....0..1..0....0..1..0....0..1..2....0..1..0....0..1..0
..2..3..1....2..3..4....2..3..2....2..3..1....2..3..0....2..3..1....2..3..2
..4..2..4....0..5..0....0..4..0....0..4..5....4..5..3....4..5..3....0..1..4
..0..5..0....1..2..1....1..2..1....5..3..4....0..1..0....0..6..4....2..0..1
		

Crossrefs

Columns 1-5 are A000110(n-1), A020557(n-1), A208051, A208052, A208053.

A068271 1/4 the number of colorings of an n X n rhombic hexagonal array with 4 colors.

Original entry on oeis.org

1, 12, 264, 11424, 1008576, 184910592, 71033971200, 57469424744448, 98237339264864256, 355574469749489123328, 2729407814499050197254144, 44482040254775494064841818112, 1540473331004371306422199656382464, 113440401780206156918876627438624833536
Offset: 1

Views

Author

R. H. Hardin, Feb 24 2002

Keywords

Comments

Terms for rhombic- and staggered- hexagonal arrays are the same for n in 1..4.

Crossrefs

Extensions

a(9) from Alois P. Heinz, May 02 2012
a(10)-a(14) from Andrew Howroyd, Jun 25 2017

A068244 1/6 the number of colorings of a 3 X 3 rhombic- or staggered- hexagonal array with n colors.

Original entry on oeis.org

1, 176, 5490, 65600, 455875, 2239776, 8647716, 27962880, 78920325, 200002000, 464447126, 1003294656, 2039332295, 3935444800, 7261533000, 12884914176, 22089914121, 36733221360, 59442494650, 93866696000, 144987663051, 219503536736, 326295822700, 476993088000
Offset: 3

Views

Author

R. H. Hardin, Feb 24 2002

Keywords

Comments

Numbers for rhombic- and staggered- hexagonal arrays differ above 4 X 4.

Crossrefs

Programs

  • Maple
    a:= n-> (248 +(-1012 +(1786 +(-1791 +(1120 +(-448 +(112 +(-16+n)*n) *n) *n) *n) *n) *n) *n) *n/6:
    seq(a(n), n=3..40);  #  Alois P. Heinz, May 02 2012

Formula

From Alois P. Heinz, May 02 2012: (Start)
G.f.: (1089*x^6+10934*x^5+26015*x^4+18500*x^3+3775*x^2+166*x+1) / (x-1)^10*x^3.
a(n) = (n^9 -16*n^8 +112*n^7 -448*n^6 +1120*n^5 -1791*n^4 +1786*n^3 -1012*n^2 +248*n)/6. (End)

A068245 1/6 the number of colorings of a 4 X 4 rhombic- or staggered- hexagonal array with n colors.

Original entry on oeis.org

1, 7616, 5141250, 552093440, 20631905875, 395001645696, 4771909547076, 41190314035200, 275192443300005, 1502690499112000, 6971521964029766, 28275884687022336, 102456840191225975, 337289521082456320, 1022310183284613000, 2883605488481550336, 7636012822945480521
Offset: 3

Views

Author

R. H. Hardin, Feb 24 2002

Keywords

Comments

Numbers for rhombic- and staggered- hexagonal arrays differ above 4 X 4.

Crossrefs

Programs

  • Magma
    [(n^11 -26*n^10 +310*n^9 -2240*n^8 +10915*n^7 -37726*n^6 +94576*n^5 -172395*n^4 +224588*n^3 -199854*n^2 +109788*n -28340)*n *(n-1)*(n-2)^3/6: n in [3..19]]; // Bruno Berselli, May 03 2012
  • Maple
    a:= n-> (-226720+ (1445104+ (-4304712+ (7968348+ (-10265148+ (9755858+ (-7068408+ (3975561+ (-1749715+ (602408+ (-160859+ (32703+ (-4898+ (510+ (-33+n)*n) *n) *n) *n) *n) *n) *n) *n) *n) *n) *n) *n) *n) *n) *n/6:
    seq(a(n), n=3..40); #  Alois P. Heinz, May 02 2012

Formula

From Alois P. Heinz, May 02 2012: (Start)
G.f.: -(7926831*x^13 +710120929*x^12 +16477733814*x^11 +144915014346*x^10 +569769493505*x^9 +1086745824783*x^8 +1040642122932*x^7 +499586289612*x^6 +115866023553*x^5 +11940350895*x^4 +465727286*x^3 +5011914*x^2 +7599*x+1) *x^3 / (x-1)^17.
a(n) = (n^16 -33*n^15 +510*n^14 -4898*n^13 +32703*n^12 -160859*n^11 +602408*n^10 -1749715*n^9 +3975561*n^8 -7068408*n^7 +9755858*n^6 -10265148*n^5 +7968348*n^4 -4304712*n^3 +1445104*n^2 -226720*n)/6. (End)

Extensions

Extended beyond a(15) by Alois P. Heinz, May 02 2012

A068246 1/6 the number of colorings of a 5 X 5 rhombic hexagonal array with n colors.

Original entry on oeis.org

1, 672384, 24673292910, 47694893373440, 16222878355401375, 1842996126472816896, 98798500424990038764, 3068393771393664491520, 62960689342002146953005, 933100311834971308336000, 10639781338324232990590266, 97779035968707368095801344, 750090455889142956720814955
Offset: 3

Views

Author

R. H. Hardin, Feb 24 2002

Keywords

Crossrefs

Programs

  • Maple
    a:= n-> (3008737472+ (-26856982336+ (115567646848+ (-319382723824+ (636837385892+ (-975405045160+ (1192546680096+ (-1193738274422+ (995467197535+ (-699933854941+ (418375982241+ (-213720456031+ (93568827565+ (-35133626327+ (11298632622+
    (-3101089711+ (722137763+ (-141421592+ (23000726+ (-3051871+ (321994+ (-25992+ (1508+(-56+n) *n) *n) *n) *n) *n) *n) *n) *n) *n) *n) *n) *n) *n) *n) *n) *n) *n) *n) *n) *n) *n) *n) *n) *n/6:
    seq (a(n), n=3..40); #  Alois P. Heinz, May 02 2012

Formula

G.f.: (1155805517421*x^22 +898154715023598*x^21 +153334491715682431*x^20 +9260621966248364140*x^19 +250086793798293779695*x^18 +3463005755473293705486*x^17 +26809839147864527991573*x^16 +122805799859998392511056*x^15 +345417237429621912129330*x^14 +610511151468783633149340*x^13 +686259871966584143669766*x^12 +491767778082675626596168*x^11 +223082415423639038320846*x^10 +62970879259692393145420*x^9 +10739574336476388551610*x^8 +1057138433525073018576*x^7 +56029398700931117553*x^6 +1436637989069258166*x^5 +14990828199704235*x^4 +47053606279980*x^3 +24655811251*x^2+672358*x+1)*x^3 / (x-1)^26. - Alois P. Heinz, May 02 2012

Extensions

Extended beyond a(10) by Alois P. Heinz, May 02 2012

A068247 1/6 the number of colorings of a 6 X 6 rhombic hexagonal array with n colors.

Original entry on oeis.org

1, 123273728, 606966551329230, 42294602754348892160, 221621345837018832499375, 227499859288036192921814016, 76749554391225308000690033388, 11559255542512176814494743592960, 945121787128699657370828476884045, 47886238054762718784097603771840000
Offset: 3

Views

Author

R. H. Hardin, Feb 24 2002

Keywords

Crossrefs

Formula

a(n) = A212163(n,6)/6. - Alois P. Heinz, Dec 20 2012

Extensions

Extended beyond a(7) by Alois P. Heinz, May 02 2012

A068272 1/5 the number of colorings of an n X n rhombic hexagonal array with 5 colors.

Original entry on oeis.org

1, 36, 6588, 6169500, 29607951492, 728359861595076, 91850117930957987604, 59375832328440271451653884, 196759041550650648492160100067468, 3342365125469959463321258123750822068332, 291049545090789051667036543236086657649935910108
Offset: 1

Views

Author

R. H. Hardin, Feb 24 2002

Keywords

Comments

Terms for rhombic- and staggered- hexagonal arrays are the same for n in 1..4.

Crossrefs

Extensions

a(8)-a(9) from Alois P. Heinz, May 02 2012
a(10)-a(11) from Andrew Howroyd, Jun 25 2017
Showing 1-10 of 20 results. Next