A212162
Triangle T(n,k), n>=1, 0<=k<=n^2, read by rows: row n gives the coefficients of the chromatic polynomial of the rhombic hexagonal square grid graph RH_(n,n), highest powers first.
Original entry on oeis.org
1, 0, 1, -5, 8, -4, 0, 1, -16, 112, -448, 1120, -1791, 1786, -1012, 248, 0, 1, -33, 510, -4898, 32703, -160859, 602408, -1749715, 3975561, -7068408, 9755858, -10265148, 7968348, -4304712, 1445104, -226720, 0, 1, -56, 1508, -25992, 321994, -3051871, 23000726, -141421592, 722137763, -3101089711
Offset: 1
3 example graphs: o--o--o
. | /| /|
. |/ |/ |
. o--o o--o--o
. | /| | /| /|
. |/ | |/ |/ |
. o o--o o--o--o
Graph: RH_(1,1) RH_(2,2) RH_(3,3)
Vertices: 1 4 9
Edges: 0 5 16
The rhombic hexagonal square grid graph RH_(2,2) has chromatic polynomial q*(q-1)*(q-2)^2 = q^4 -5*q^3 +8*q^2 -4*q => row 2 = [1, -5, 8, -4, 0].
Triangle T(n,k) begins:
1, 0;
1, -5, 8, -4, 0;
1, -16, 112, -448, 1120, -1791, ...
1, -33, 510, -4898, 32703, -160859, ...
1, -56, 1508, -25992, 321994, -3051871, ... , -3101089711, ...
1, -85, 3520, -94620, 1855860, -28306676, ...
1, -120, 7068, -272344, 7720110, -171656543, ...
1, -161, 12782, -667058, 25738055, -783003395, ...
Row sums (for n>1) and last elements of rows give:
A000004, row lengths give:
A002522.
A212195
Square array A(n,k), n>=1, k>=1, read by antidiagonals: A(n,k) is the number of n-colorings of the staggered hexagonal square grid graph SH_(k,k).
Original entry on oeis.org
1, 0, 2, 0, 0, 3, 0, 0, 6, 4, 0, 0, 6, 48, 5, 0, 0, 6, 1056, 180, 6, 0, 0, 6, 45696, 32940, 480, 7, 0, 0, 6, 4038432, 30847500, 393600, 1050, 8, 0, 0, 6, 743601024, 148046704020, 3312560640, 2735250, 2016, 9
Offset: 1
Square array A(n,k) begins:
1, 0, 0, 0, 0, ...
2, 0, 0, 0, 0, ...
3, 6, 6, 6, 6, ...
4, 48, 1056, 45696, 4038432, ...
5, 180, 32940, 30847500, 148046704020, ...
6, 480, 393600, 3312560640, 286170443437440, ...
7, 1050, 2735250, 123791435250, 97337320223288250, ...
Rows n=1-10, 16-18 give:
A000007,
A000038,
A040006, 4*
A068283, 5*
A068284, 6*
A068285, 7*
A068286, 8*
A068287, 9*
A068288, 10*
A068289, 16*
A068290, 17*
A068291, 18*
A068292.
A208050
T(n,k)=Number of nXk 0..3 arrays with new values 0..3 introduced in row major order and no element equal to any horizontal, vertical or antidiagonal neighbor (colorings ignoring permutations of colors).
Original entry on oeis.org
1, 1, 1, 2, 2, 2, 5, 8, 8, 5, 14, 32, 44, 32, 14, 41, 128, 244, 244, 128, 41, 122, 512, 1356, 1904, 1356, 512, 122, 365, 2048, 7540, 14976, 14976, 7540, 2048, 365, 1094, 8192, 41932, 118096, 168096, 118096, 41932, 8192, 1094, 3281, 32768, 233204, 931968
Offset: 1
Table starts
...1....1......2.......5........14.........41..........122...........365
...1....2......8......32.......128........512.........2048..........8192
...2....8.....44.....244......1356.......7540........41932........233204
...5...32....244....1904.....14976.....118096.......931968.......7356288
..14..128...1356...14976....168096....1897888.....21472544.....243113056
..41..512...7540..118096...1897888...30818432....502504448....8206614784
.122.2048..41932..931968..21472544..502504448..11838995200..279733684992
.365.8192.233204.7356288.243113056.8206614784.279733684992.9578237457408
...
Some solutions for n=4 k=3
..0..1..0....0..1..2....0..1..0....0..1..0....0..1..2....0..1..2....0..1..2
..2..3..1....2..3..0....2..3..1....2..3..1....2..0..3....2..3..0....2..0..3
..1..2..0....0..1..2....0..2..3....0..2..3....1..2..1....1..2..1....1..2..0
..3..1..2....2..3..1....1..0..1....3..0..2....3..0..3....3..0..2....3..1..2
A208054
T(n,k) = Number of n X k nonnegative integer arrays with new values 0 upwards introduced in row major order and no element equal to any horizontal, vertical or antidiagonal neighbor (colorings ignoring permutations of colors).
Original entry on oeis.org
1, 1, 1, 2, 2, 2, 5, 15, 15, 5, 15, 203, 716, 203, 15, 52, 4140, 83440, 83440, 4140, 52, 203, 115975, 18171918, 112073062, 18171918, 115975, 203, 877, 4213597, 6423127757, 346212384169, 346212384169, 6423127757, 4213597, 877, 4140, 190899322
Offset: 1
Table starts
...1.........1.............2................5................15
...1.........2............15..............203..............4140
...2........15...........716............83440..........18171918
...5.......203.........83440........112073062......346212384169
..15......4140......18171918.....346212384169.18633407199331522
..52....115975....6423127757.2043836452962923
.203...4213597.3376465219485
.877.190899322
...
Some solutions for n=4 k=3
..0..1..0....0..1..0....0..1..0....0..1..0....0..1..2....0..1..0....0..1..0
..2..3..1....2..3..4....2..3..2....2..3..1....2..3..0....2..3..1....2..3..2
..4..2..4....0..5..0....0..4..0....0..4..5....4..5..3....4..5..3....0..1..4
..0..5..0....1..2..1....1..2..1....5..3..4....0..1..0....0..6..4....2..0..1
A068271
1/4 the number of colorings of an n X n rhombic hexagonal array with 4 colors.
Original entry on oeis.org
1, 12, 264, 11424, 1008576, 184910592, 71033971200, 57469424744448, 98237339264864256, 355574469749489123328, 2729407814499050197254144, 44482040254775494064841818112, 1540473331004371306422199656382464, 113440401780206156918876627438624833536
Offset: 1
A068244
1/6 the number of colorings of a 3 X 3 rhombic- or staggered- hexagonal array with n colors.
Original entry on oeis.org
1, 176, 5490, 65600, 455875, 2239776, 8647716, 27962880, 78920325, 200002000, 464447126, 1003294656, 2039332295, 3935444800, 7261533000, 12884914176, 22089914121, 36733221360, 59442494650, 93866696000, 144987663051, 219503536736, 326295822700, 476993088000
Offset: 3
A068245
1/6 the number of colorings of a 4 X 4 rhombic- or staggered- hexagonal array with n colors.
Original entry on oeis.org
1, 7616, 5141250, 552093440, 20631905875, 395001645696, 4771909547076, 41190314035200, 275192443300005, 1502690499112000, 6971521964029766, 28275884687022336, 102456840191225975, 337289521082456320, 1022310183284613000, 2883605488481550336, 7636012822945480521
Offset: 3
-
[(n^11 -26*n^10 +310*n^9 -2240*n^8 +10915*n^7 -37726*n^6 +94576*n^5 -172395*n^4 +224588*n^3 -199854*n^2 +109788*n -28340)*n *(n-1)*(n-2)^3/6: n in [3..19]]; // Bruno Berselli, May 03 2012
-
a:= n-> (-226720+ (1445104+ (-4304712+ (7968348+ (-10265148+ (9755858+ (-7068408+ (3975561+ (-1749715+ (602408+ (-160859+ (32703+ (-4898+ (510+ (-33+n)*n) *n) *n) *n) *n) *n) *n) *n) *n) *n) *n) *n) *n) *n) *n/6:
seq(a(n), n=3..40); # Alois P. Heinz, May 02 2012
A068246
1/6 the number of colorings of a 5 X 5 rhombic hexagonal array with n colors.
Original entry on oeis.org
1, 672384, 24673292910, 47694893373440, 16222878355401375, 1842996126472816896, 98798500424990038764, 3068393771393664491520, 62960689342002146953005, 933100311834971308336000, 10639781338324232990590266, 97779035968707368095801344, 750090455889142956720814955
Offset: 3
-
a:= n-> (3008737472+ (-26856982336+ (115567646848+ (-319382723824+ (636837385892+ (-975405045160+ (1192546680096+ (-1193738274422+ (995467197535+ (-699933854941+ (418375982241+ (-213720456031+ (93568827565+ (-35133626327+ (11298632622+
(-3101089711+ (722137763+ (-141421592+ (23000726+ (-3051871+ (321994+ (-25992+ (1508+(-56+n) *n) *n) *n) *n) *n) *n) *n) *n) *n) *n) *n) *n) *n) *n) *n) *n) *n) *n) *n) *n) *n) *n) *n) *n/6:
seq (a(n), n=3..40); # Alois P. Heinz, May 02 2012
A068247
1/6 the number of colorings of a 6 X 6 rhombic hexagonal array with n colors.
Original entry on oeis.org
1, 123273728, 606966551329230, 42294602754348892160, 221621345837018832499375, 227499859288036192921814016, 76749554391225308000690033388, 11559255542512176814494743592960, 945121787128699657370828476884045, 47886238054762718784097603771840000
Offset: 3
A068272
1/5 the number of colorings of an n X n rhombic hexagonal array with 5 colors.
Original entry on oeis.org
1, 36, 6588, 6169500, 29607951492, 728359861595076, 91850117930957987604, 59375832328440271451653884, 196759041550650648492160100067468, 3342365125469959463321258123750822068332, 291049545090789051667036543236086657649935910108
Offset: 1
Showing 1-10 of 20 results.
Comments