cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A207868 T(n,k)=Number of n X k nonnegative integer arrays with new values 0 upwards introduced in row major order and no element equal to any horizontal or vertical neighbor (colorings ignoring permutations of colors).

Original entry on oeis.org

1, 1, 1, 2, 4, 2, 5, 34, 34, 5, 15, 500, 2052, 500, 15, 52, 10900, 278982, 278982, 10900, 52, 203, 322768, 68162042, 455546040, 68162042, 322768, 203, 877, 12297768, 26419793726, 1625686993918, 1625686993918, 26419793726, 12297768, 877
Offset: 1

Views

Author

R. H. Hardin, Feb 21 2012

Keywords

Comments

Table starts
...1.........1..............2.................5.................15
...1.........4.............34...............500..............10900
...2........34...........2052............278982...........68162042
...5.......500.........278982.........455546040......1625686993918
..15.....10900.......68162042.....1625686993918.103204230192540988
..52....322768....26419793726.10764437129618296
.203..12297768.15002771641712
.877.580849872

Examples

			Some solutions for n=5 k=3
..0..1..0....0..1..2....0..1..0....0..1..0....0..1..2....0..1..0....0..1..0
..1..0..1....1..0..3....1..0..1....1..0..1....1..2..0....1..0..1....1..0..1
..0..1..0....0..1..0....0..1..0....2..1..0....0..1..2....0..2..3....0..1..2
..1..0..1....1..0..1....1..0..1....0..2..3....1..0..1....1..0..1....1..0..1
..0..1..0....0..1..0....2..1..0....1..3..0....2..1..0....0..1..0....0..1..0
		

Crossrefs

Columns 1..5 are A000110(n-1), A207864, A207865, A207866, A207867.
Main diagonal is A207863.
Cf. A207997 (3 colorings), A198715 (4 colorings), A198906 (5 colorings), A198982 (6 colorings), A198723 (7 colorings), A198914 (8 colorings).
Cf. A207981, A208001 (knight), A208021 (king), A208054, A208096, A208301.

A212209 Square array A(n,k), n>=1, k>=1, read by antidiagonals: A(n,k) is the number of n-colorings of the square diagonal grid graph DG_(k,k).

Original entry on oeis.org

1, 0, 2, 0, 0, 3, 0, 0, 0, 4, 0, 0, 0, 24, 5, 0, 0, 0, 72, 120, 6, 0, 0, 0, 168, 6720, 360, 7, 0, 0, 0, 360, 935040, 126360, 840, 8, 0, 0, 0, 744, 325061760, 265035240, 1128960, 1680, 9, 0, 0, 0, 1512, 283192323840, 3322711053720, 17160407040, 6510000, 3024, 10
Offset: 1

Views

Author

Alois P. Heinz, May 04 2012

Keywords

Comments

The square diagonal grid graph DG_(n,n) has n^2 = A000290(n) vertices and 2*(n-1)*(2*n-1) = A002943(n-1) edges; see A212208 for example. The chromatic polynomial of DG_(n,n) has n^2+1 = A002522(n) coefficients.
This graph is also called the king graph. - Andrew Howroyd, Jun 25 2017

Examples

			Square array A(n,k) begins:
  1,   0,       0,           0,                0, ...
  2,   0,       0,           0,                0, ...
  3,   0,       0,           0,                0, ...
  4,  24,      72,         168,              360, ...
  5, 120,    6720,      935040,        325061760, ...
  6, 360,  126360,   265035240,    3322711053720, ...
  7, 840, 1128960, 17160407040, 2949948395735040, ...
		

Crossrefs

Columns 1-5 give: A000027, A052762 = 24*A000332, 24*A068250, 24*A068251, 24*A068252.
Rows n=1-16 give: A000007, A000038, 3*A000007, 4*A068293, 5*A068294, 6*A068295, 7*A068296, 8*A068297, 9*A068298, 10*A068299, 11*A068300, 12*A068301, 13*A068302, 14*A068303, 15*A068304, 16*A068305.

A289136 Number of colorings of the n X n king graph up to permutation of the colors.

Original entry on oeis.org

1, 1, 270, 30066912, 3662498214110836, 978788002444637886853083440, 1017523795194980592656592864724960780556190, 6723457445689415320074916040888682277646129463792942126176174
Offset: 1

Views

Author

Andrew Howroyd, Jun 25 2017

Keywords

Crossrefs

Main diagonal of A208021.

Programs

A208018 Number of n X 3 nonnegative integer arrays with new values 0 upwards introduced in row major order and no element equal to any horizontal, vertical, diagonal or antidiagonal neighbor (colorings ignoring permutations of colors).

Original entry on oeis.org

2, 7, 270, 27093, 5252041, 1688298227, 819147302097, 562766251199622, 522687453434959180, 633631710314384052082, 975235769907492737264795, 1863659976446678796423595540, 4341202639797991970260869847084, 12137362722177750192276998364963783
Offset: 1

Views

Author

R. H. Hardin, Feb 22 2012

Keywords

Examples

			Some solutions for n=4
..0..1..0....0..1..0....0..1..0....0..1..2....0..1..0....0..1..2....0..1..0
..2..3..2....2..3..2....2..3..2....2..3..0....2..3..2....2..3..4....2..3..2
..4..0..4....0..1..0....4..1..0....4..5..4....0..1..0....5..6..0....0..1..0
..1..2..1....2..3..2....5..2..3....0..1..2....2..3..4....2..3..1....3..2..3
		

Crossrefs

Column 3 of A208021.

Extensions

Terms a(14) and beyond from Andrew Howroyd, Jun 25 2017

A208019 Number of n X 4 nonnegative integer arrays with new values 0 upwards introduced in row major order and no element equal to any horizontal, vertical, diagonal or antidiagonal neighbor (colorings ignoring permutations of colors).

Original entry on oeis.org

5, 87, 27093, 30066912, 80318704605, 421673189900658, 3840411377316733859, 55738840149772892317910, 1212109474086951274342594323, 37684550247867169399313491413883, 1614317526939802578784333734266333582, 92481709137707355217408169152041892948306
Offset: 1

Views

Author

R. H. Hardin, Feb 22 2012

Keywords

Examples

			Some solutions for n=4
..0..1..2..1....0..1..0..1....0..1..0..1....0..1..0..1....0..1..0..1
..2..3..0..3....2..3..2..3....2..3..2..3....2..3..2..3....2..3..2..3
..0..4..1..2....4..0..5..0....0..1..0..1....0..1..0..4....0..1..4..0
..1..2..3..4....1..2..3..1....4..2..3..5....2..3..2..1....2..3..2..1
		

Crossrefs

Column 4 of A208021.

Extensions

Terms a(8) and beyond from Andrew Howroyd, Jun 25 2017

A208020 Number of n X 5 nonnegative integer arrays with new values 0 upwards introduced in row major order and no element equal to any horizontal, vertical, diagonal or antidiagonal neighbor (colorings ignoring permutations of colors).

Original entry on oeis.org

15, 1657, 5252041, 80318704605, 3662498214110836, 387950830575476495043, 81811898713607232898679186, 30915192640251267259536636853106, 19388812191991157504565482403825817325, 19036318336696557481934278608884237849314405
Offset: 1

Views

Author

R. H. Hardin, Feb 22 2012

Keywords

Examples

			Some solutions for n=4
..0..1..0..1..0....0..1..2..0..1....0..1..0..1..0....0..1..0..1..0
..2..3..2..3..4....2..3..4..3..2....2..3..2..3..2....2..3..2..3..2
..0..4..1..0..1....1..0..1..0..1....0..1..0..1..0....0..1..4..0..1
..2..3..2..3..2....2..3..2..3..2....2..3..2..3..2....2..3..2..3..2
		

Crossrefs

Column 5 of A208021.

Extensions

Terms a(6) and beyond from Andrew Howroyd, Jun 25 2017
Showing 1-6 of 6 results.