A212215 Number of representations of n as a sum of products of pairs of positive integers >=2, n = Sum_{k=1..m} i_k*j_k with 2<=i_k<=j_k, i_k<=i_{k+1}, j_k<=j_{k+1}, i_k*j_k<=i_{k+1}*j_{k+1}.
1, 0, 0, 0, 1, 0, 1, 0, 2, 1, 2, 0, 5, 1, 4, 2, 9, 1, 11, 2, 16, 5, 18, 3, 33, 8, 31, 11, 52, 11, 64, 16, 83, 29, 100, 26, 152, 39, 159, 59, 233, 61, 280, 83, 354, 129, 423, 122, 591, 180, 644, 241, 864, 260, 1050, 341, 1282, 472, 1523, 490, 2016, 655, 2224
Offset: 0
Keywords
Examples
a(0) = 1: 0 = the empty sum. a(4) = 1: 4 = 2*2. a(6) = 1: 6 = 2*3. a(8) = 2: 8 = 2*2 + 2*2 = 2*4. a(9) = 1: 9 = 3*3. a(10) = 2: 10 = 2*2 + 2*3 = 2*5. a(17) = 1 = A182270(17)-1, one of the 2 sums counted by A182270(17) is not allowed: 17 = 2*4 + 3*3.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..200
Crossrefs
Programs
-
Maple
with(numtheory): b:= proc(n, m, i, j) option remember; `if`(n=0, 1, `if`(m<4, 0, b(n, m-1, i, j) +`if`(m>n, 0, add(b(n-m, m, min(i, k), min(j, m/k)), k=select(x-> is(x>1 and x<=min(sqrt(m), i) and m<=j*x), divisors(m)))))) end: a:= n-> b(n$4): seq(a(n), n=0..30);
-
Mathematica
b[n_, m_, i_, j_] := b[n, m, i, j] = If[n == 0, 1, If[m < 4, 0, b[n, m - 1, i, j] + If[m > n, 0, Sum[b[n - m, m, Min[i, k], Min[j, m/k]], {k, Select[ Divisors[m], # > 1 && # <= Min[Sqrt[m], i] && m <= j*# &]}]]]]; a[n_] := b[n, n, n, n]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jan 23 2017, after Alois P. Heinz *)
Comments