A214214 Partial sums of A214212.
1, 3, 5, 9, 11, 15, 19, 21, 23, 27, 31, 35, 39, 41, 43, 45, 47, 51, 55, 59, 63, 67, 71, 75, 79, 81, 83, 85, 87, 89, 91, 93, 95, 99, 103, 107, 111, 115, 119, 123, 127, 131, 135, 139, 143, 147, 151, 155, 159, 161, 163, 165, 167, 169, 171, 173, 175, 177, 179, 181, 183, 185, 187, 189, 191, 195, 199, 203, 207, 211, 215, 219, 223, 227, 231, 235, 239, 243, 247, 251
Offset: 0
Keywords
References
- Hsien-Kuei Hwang, S Janson, TH Tsai, Exact and asymptotic solutions of the recurrence f(n) = f(floor(n/2)) + f(ceiling(n/2)) + g(n): theory and applications, Preprint, 2016; http://140.109.74.92/hk/wp-content/files/2016/12/aat-hhrr-1.pdf. Also Exact and Asymptotic Solutions of a Divide-and-Conquer Recurrence Dividing at Half: Theory and Applications, ACM Transactions on Algorithms, 13:4 (2017), #47; DOI: 10.1145/3127585
Links
- Robert Israel, Table of n, a(n) for n = 0..10000
- S. Brlek, Enumeration of factors in the Thue-Morse word, Discrete Applied Math., 24 (1989), 83-96. See the sequence beta in Eq. (2).
Comments