cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A212260 G.f. A(x) satisfies A(x)+A(x)^2+A(x)^3 = (1-sqrt(1-4*x))/2.

Original entry on oeis.org

0, 1, 0, 1, 3, 5, 22, 64, 198, 710, 2332, 8105, 28665, 100653, 361104, 1301180, 4713267, 17217021, 63140534, 232702261, 861507251, 3200666821, 11933894310, 44636509320, 167427781950, 629691033738, 2373987233286, 8970240131032, 33965443165016, 128857452216256
Offset: 0

Views

Author

Vladimir Kruchinin, May 12 2012

Keywords

Crossrefs

Cf. A103779.

Programs

  • Maple
    a:= n-> coeff(series(RootOf(A+A^2+A^3=(1-sqrt(1-4*x))/2, A), x, n+1), x, n): seq(a(n), n=0..40); # Alois P. Heinz, May 12 2012
    # second Maple program:
    a:= proc(n) option remember; `if`(n<5, [0, 1, 0, 1, 3][n+1],
         (2*(n-1)*(n-2)*(n-3)*(21574*n^2-148237*n+252420)*a(n-1)
         +(n-2)*(n-3)*(30485*n^3-173514*n^2+191353*n+116820)*a(n-2)
         -4*(n-3)*(12730*n^4-266121*n^3+1766621*n^2-4771248*n+4563630)*a(n-3)
         -36*(6*n-23)*(67*n-183)*(6*n-25)*(3*n-10)*(3*n-11)*a(n-4))/
         (132*(67*n-250)*(n-1)*(n-2)*(n-3)*n))
        end:
    seq(a(n), n=0..40);  # Alois P. Heinz, Sep 27 2013
  • Mathematica
    nn=29;f[x_]:=Sum[a[n]x^n,{n,0,nn}];sol=SolveAlways[0==Series[f[x]+f[x]^2 +f[x]^3-(1-(1-4x)^(1/2))/2,{x,0,nn}],x][[3]];Table[a[n],{n,0,nn}]/.sol (* Geoffrey Critzer, Sep 27 2013 *)
  • Maxima
    a(n):=(sum(binomial(2*n-k-1,n-1)*(sum((-1)^i*binomial(i,k-i-1) *binomial(k+i-1,k-1), i,1,k-1)), k,2,n) +binomial(2*n-2,n-1))/n;

Formula

a(n) = (sum(k=2..n, C(2*n-k-1,n-1)*(sum(i=1..k-1, (-1)^i*C(i,k-i-1) * C(k+i-1,k-1)))) +C(2*n-2,n-1))/n if n>0, a(0) = 0.
a(n) ~ c * 4^n / (sqrt(Pi) * n^(3/2)), where c = 0.12273243737616788383659461976... is the real root of the equation 8*c*(134*c^2 - 1) = 1. - Vaclav Kotesovec, Nov 20 2017