A212262 a(n) = 3^n + Fibonacci(n).
1, 4, 10, 29, 84, 248, 737, 2200, 6582, 19717, 59104, 177236, 531585, 1594556, 4783346, 14349517, 43047708, 129141760, 387423073, 1162265648, 3486791166, 10460364149, 31381077320, 94143207484, 282429582849, 847288684468, 2541865949722, 7625597681405
Offset: 0
Links
- Bruno Berselli, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (4,-2,-3).
Programs
-
Magma
[3^n+Fibonacci(n): n in [0..27]];
-
Mathematica
Table[3^n + Fibonacci[n], {n, 0, 27}]
-
PARI
for(n=0, 27, print1(3^n+fibonacci(n)", "));
-
Sage
[3^n +fibonacci(n) for n in (0..30)] # G. C. Greubel, Jul 05 2021
Formula
G.f.: (1-2*x)*(1+2*x)/((1-3*x)*(1-x-x^2)).