cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A117591 a(n) = 2^n + Fibonacci(n).

Original entry on oeis.org

1, 3, 5, 10, 19, 37, 72, 141, 277, 546, 1079, 2137, 4240, 8425, 16761, 33378, 66523, 132669, 264728, 528469, 1055341, 2108098, 4212015, 8417265, 16823584, 33629457, 67230257, 134414146, 268753267, 537385141, 1074573864, 2148829917
Offset: 0

Views

Author

Keywords

Comments

a(3n) is even if n>0. - Robert G. Wilson v, Sep 06 2002
3 divides a(8n+1) and a(8n-1). - Enrique Pérez Herrero, Dec 29 2010

Crossrefs

Programs

Formula

G.f. (1-3*x^2)/((1-x-x^2)*(1-2*x)).
a(n) = A000079(n+1) - A099036(n) = A099036(n) + 2 * A000045(n). - Reinhard Zumkeller, Aug 15 2013

A212323 a(n) = 3^n - Fibonacci(n).

Original entry on oeis.org

1, 2, 8, 25, 78, 238, 721, 2174, 6540, 19649, 58994, 177058, 531297, 1594090, 4782592, 14348297, 43045734, 129138566, 387417905, 1162257286, 3486777636, 10460342257, 31381041898, 94143150170, 282429490113, 847288534418, 2541865706936, 7625597288569
Offset: 0

Views

Author

Bruno Berselli, May 09 2012

Keywords

Crossrefs

Programs

  • Magma
    [3^n-Fibonacci(n): n in [0..27]];
  • Mathematica
    Table[3^n - Fibonacci[n], {n, 0, 27}]
    LinearRecurrence[{4,-2,-3},{1,2,8},30] (* Harvey P. Dale, Dec 08 2023 *)
  • PARI
    for(n=0, 27, print1(3^n-fibonacci(n)", "));
    

Formula

G.f.: (1 - 2*x + 2*x^2)/((1 - 3*x)*(1 - x - x^2)).
Showing 1-2 of 2 results.