A212291 Number of permutations of n elements with at most one fixed point.
1, 1, 1, 5, 17, 89, 529, 3709, 29665, 266993, 2669921, 29369141, 352429681, 4581585865, 64142202097, 962133031469, 15394128503489, 261700184559329, 4710603322067905, 89501463119290213, 1790029262385804241, 37590614510101889081, 826993519222241559761
Offset: 0
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..400
- Eric Weisstein's World of Mathematics, Crown Graph
- Eric Weisstein's World of Mathematics, Matching
- Eric Weisstein's World of Mathematics, Maximal Independent Edge Set
Programs
-
Maple
b:= proc(n) b(n):= `if` (n<1, 1, n*b(n-1)+(-1)^(n)) end: a:= n-> b(n) +n*b(n-1): seq(a(n), n=0..30); # Alois P. Heinz, Jun 17 2012
-
Mathematica
nn=20; Range[0,nn]! CoefficientList[Series[(1+x)Exp[-x]/(1-x),{x,0,nn}],x] (* Geoffrey Critzer, Sep 27 2013 *) Table[(-1)^n (HypergeometricPFQ[{1, -n}, {}, 1] - n HypergeometricPFQ[{1, 1 - n}, {}, 1]), {n, 20}] (* Eric W. Weisstein, Jun 14 2017 *) Table[2 Subfactorial[n] - (-1)^n, {n, 20}] (* Eric W. Weisstein, Dec 30 2017 *)
-
PARI
d(n)=if(n,round(n!/exp(1)),1) a(n)=if(n,n*d(n-1))+d(n)
-
PARI
my(x='x+O('x^25)); Vec(serlaplace((1+x)/(1-x)*exp(-x))) \\ Joerg Arndt, Jun 04 2023
Formula
a(n) = 2/e * n! + O(n).
a(n) = 2*!n - (-1)^n, where !n is the subfactorial. - Eric W. Weisstein, Dec 30 2017
E.g.f.: (1+x)*exp(-x)/(1-x).
From Mohammed Bouras, May 29 2023: (Start)
a(n) = n! - A155521(n-1).
A155521(n-1)/a(n) = 1/(2+3/(3+4/(4+5/(...(n-1)+n)))). (End)
Comments