A212306 Starting with the positive numbers, each element subtracts its value, a(n), from the next a(n) elements.
1, 1, 2, 2, 1, 3, 4, 1, 1, 5, 2, 5, 1, 3, 2, 6, 1, 11, 2, 1, 1, 4, 8, 1, 1, 2, 6, 1, 3, 13, 1, 9, 5, 7, 1, 1, 2, 2, 6, 3, 3, 17, 1, 17, 5, 7, 1, 1, 2, 2, 6, 3, 3, 8, 1, 4, 5, 7, 1, 18, 6, 18, 14, 1, 1, 9, 2, 7, 1, 3, 2, 1, 1, 7, 2, 17, 1, 17, 20, 1, 19, 9, 1, 1
Offset: 1
Examples
Starting with A000027, the first term is 1 so we subtract 1 from the next 1 terms so the second term becomes 1. Now again we subtract 1 from the next 1 terms and the third term becomes 2. Subtract 2 from the next two terms of A000027 (4 and 5) to get 2 and 3. Subtract 2 from the next 2 terms (the 3 from 5 and 6) to get 1 and 4. The next term is 4 - 1 = 3. To carry on subtract 3 from the next 3 terms.
Links
- Paul D. Hanna, Table of n, a(n) for n = 1..10000
Programs
-
Haskell
a212306 n = a212306_list !! (n-1) a212306_list = f [1..] where f (x:xs) = x : f ((map (subtract x) us) ++ vs) where (us, vs) = splitAt x xs -- Reinhard Zumkeller, Dec 16 2013
-
Maple
b:= proc(n) option remember; local l, t; if n=1 then [1$2] else l:= b(n-1); t:= n-l[2]; zip((x, y)->x+y, [t$t+1], subsop(1=NULL, 2=0, l), 0) fi end: a:= n-> b(n)[1]: seq(a(n), n=1..100); # Alois P. Heinz, Nov 12 2013
-
Mathematica
b[n_] := b[n] = Module[{l, t, x, y, m}, If[n == 1, {1, 1}, l = b[n-1]; t = n-l[[2]]; x = Array[t&, t+1]; y = ReplacePart[l, {1 -> Sequence[], 2 -> 0}]; m = Max[Length[x], Length[y]]; Thread[PadRight[x, m] + PadRight[y, m]]]]; a[n_] := b[n] // First; Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Jan 27 2014, after Alois P. Heinz *)
-
PARI
{a(n)=local(A=vector(n+1,j,j)); for(k=1,n+1, A = Vec(Ser(A) - x^k*A[k]*(1-x^A[k])/(1-x) +x*O(x^n)));A[n]} \\ Paul D. Hanna, Nov 12 2013 for(n=1,100,print1(a(n),", "))
-
PARI
/* Vector returns 1000 terms: */ {A=vector(1000,j,j);for(k=1,#A, A = Vec(Ser(A) - x^k*A[k]*(1-x^A[k])/(1-x) +x*O(x^#A)));A} \\ Paul D. Hanna, Nov 12 2013
Formula
a(n) is n - the sum of the terms such that a(i) + i >= n.
Each term a(n) is 1 plus the sum of the terms such that a(i) + i + 1 = n.
Comments