cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A212334 Number of words, either empty or beginning with the first letter of the 4-ary alphabet, where each letter of the alphabet occurs n times and letters of neighboring word positions are equal or neighbors in the alphabet.

Original entry on oeis.org

1, 1, 9, 163, 3593, 87501, 2266155, 61211095, 1704838665, 48605519665, 1411522695509, 41606511550803, 1241591466423467, 37435593955828069, 1138713916992923679, 34901292375152457663, 1076813644170756916745, 33416749492077957930105, 1042376218505671236116985
Offset: 0

Views

Author

Alois P. Heinz, Aug 07 2012

Keywords

Comments

Also the number of (4*n-1)-step walks on 4-dimensional cubic lattice from (1,0,0,0) to (n,n,n,n) with positive unit steps in all dimensions such that the absolute difference of the dimension indices used in consecutive steps is <= 1.
It appears that for primes p >= 5, a(p) == 1 (mod p^5). Cf. A352655. - Peter Bala, Dec 12 2021
Conjecture: for r >= 2, and all primes p >= 5, a(p^r) == a(p^(r-1)) (mod p^(3*r+3)). - Peter Bala, Oct 13 2022

Crossrefs

Column k = 4 of A208673.

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<3, [1, 1, 9][n+1],
          ((26682*n^4 -102687*n^3 +149385*n^2 -109413*n +31101) *a(n-1)
          +(-161058*n^4 +1392915*n^3 -4418826*n^2 +6030348*n -2931516) *a(n-2)
          +(4718*n^4 -47957*n^3 +176841*n^2 -275751*n +148365) *a(n-3)) /
          (n^3 *(646*n -1057)))
        end:
    seq(a(n), n=0..30);
  • Mathematica
    a[n_] := a[n] = If[n < 3, {1, 1, 9}[[n + 1]], ((26682 n^4 - 102687 n^3 + 149385 n^2 - 109413 n + 31101) a[n-1] + (-161058 n^4 + 1392915 n^3 - 4418826 n^2 + 6030348 n - 2931516)a[n-2] + (4718 n^4 - 47957 n^3 + 176841 n^2 - 275751 n + 148365)a[n-3])/(n^3 (646 n - 1057))];
    a /@ Range[0, 30] (* Jean-François Alcover, May 14 2020, after Maple *)

Formula

a(n) ~ (1 + sqrt(2))^(4*n-1) / (2^(7/4) * (Pi*n)^(3/2)). - Vaclav Kotesovec, Aug 13 2013, simplified Apr 06 2022
From Peter Bala, Apr 17 2022: (Start)
a(n) = (1/12)*(A005259(n) + 7*A005259(n-1)) for n >= 1.
The supercongruences a(n*p^k) == a(n*p^(k-1)) (mod p^(3*k)) hold for all primes p >= 5 and positive integers n and k.
a(n) = (1/3)*Sum_{k = 0..n} binomial(n,k)^2*binomial(n + k,k)^2*(2*n^2 - 3*k*n + 2*k^2)/(n + k)^2.
(24*n^3 - 102*n^2 + 148*n - 73)*n^3*a(n) = 4*(204*n^6 - 1173*n^5 + 2668*n^4 - 3065*n^3 + 1905*n^2 - 634*n + 86)*a(n-1) - (24*n^3 - 30*n^2 + 16*n-3)*(n - 2)^3*a(n-2) with a(0) = a(1) = 1. (End)
a(n) = Sum_{k=0..n-1} binomial(n,k)*binomial(n-1,k)*binomial(n+k-1,k)^2 for n>=1. - Peter Bala, Mar 22 2023