A212334 Number of words, either empty or beginning with the first letter of the 4-ary alphabet, where each letter of the alphabet occurs n times and letters of neighboring word positions are equal or neighbors in the alphabet.
1, 1, 9, 163, 3593, 87501, 2266155, 61211095, 1704838665, 48605519665, 1411522695509, 41606511550803, 1241591466423467, 37435593955828069, 1138713916992923679, 34901292375152457663, 1076813644170756916745, 33416749492077957930105, 1042376218505671236116985
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..656
Programs
-
Maple
a:= proc(n) option remember; `if`(n<3, [1, 1, 9][n+1], ((26682*n^4 -102687*n^3 +149385*n^2 -109413*n +31101) *a(n-1) +(-161058*n^4 +1392915*n^3 -4418826*n^2 +6030348*n -2931516) *a(n-2) +(4718*n^4 -47957*n^3 +176841*n^2 -275751*n +148365) *a(n-3)) / (n^3 *(646*n -1057))) end: seq(a(n), n=0..30);
-
Mathematica
a[n_] := a[n] = If[n < 3, {1, 1, 9}[[n + 1]], ((26682 n^4 - 102687 n^3 + 149385 n^2 - 109413 n + 31101) a[n-1] + (-161058 n^4 + 1392915 n^3 - 4418826 n^2 + 6030348 n - 2931516)a[n-2] + (4718 n^4 - 47957 n^3 + 176841 n^2 - 275751 n + 148365)a[n-3])/(n^3 (646 n - 1057))]; a /@ Range[0, 30] (* Jean-François Alcover, May 14 2020, after Maple *)
Formula
a(n) ~ (1 + sqrt(2))^(4*n-1) / (2^(7/4) * (Pi*n)^(3/2)). - Vaclav Kotesovec, Aug 13 2013, simplified Apr 06 2022
From Peter Bala, Apr 17 2022: (Start)
The supercongruences a(n*p^k) == a(n*p^(k-1)) (mod p^(3*k)) hold for all primes p >= 5 and positive integers n and k.
a(n) = (1/3)*Sum_{k = 0..n} binomial(n,k)^2*binomial(n + k,k)^2*(2*n^2 - 3*k*n + 2*k^2)/(n + k)^2.
(24*n^3 - 102*n^2 + 148*n - 73)*n^3*a(n) = 4*(204*n^6 - 1173*n^5 + 2668*n^4 - 3065*n^3 + 1905*n^2 - 634*n + 86)*a(n-1) - (24*n^3 - 30*n^2 + 16*n-3)*(n - 2)^3*a(n-2) with a(0) = a(1) = 1. (End)
a(n) = Sum_{k=0..n-1} binomial(n,k)*binomial(n-1,k)*binomial(n+k-1,k)^2 for n>=1. - Peter Bala, Mar 22 2023
Comments