cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A212364 Number of Dyck n-paths all of whose ascents and descents have lengths equal to 1 (mod 5).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 4, 7, 11, 16, 23, 35, 57, 96, 161, 264, 425, 682, 1106, 1821, 3030, 5055, 8412, 13956, 23145, 38487, 64261, 107673, 180762, 303651, 510187, 857692, 1443597, 2433495, 4108299, 6943862, 11746362, 19883655, 33681015, 57096874, 96874214
Offset: 0

Views

Author

Alois P. Heinz, May 10 2012

Keywords

Examples

			a(0) = 1: the empty path.
a(1) = 1: UD.
a(5) = 1: UDUDUDUDUD.
a(6) = 2: UDUDUDUDUDUD, UUUUUUDDDDDD.
a(7) = 4: UDUDUDUDUDUDUD, UDUUUUUUDDDDDD, UUUUUUDDDDDDUD, UUUUUUDUDDDDDD.
a(8) = 7: UDUDUDUDUDUDUDUD, UDUDUUUUUUDDDDDD, UDUUUUUUDDDDDDUD, UDUUUUUUDUDDDDDD, UUUUUUDDDDDDUDUD, UUUUUUDUDDDDDDUD, UUUUUUDUDUDDDDDD.
		

Crossrefs

Column k=5 of A212363.
Cf. A023432 (m=3), A023427 (m=4), this sequence (m=5), A212386(m=6).

Programs

  • Maple
    a:= proc(n) option remember;
          `if`(n=0, 1, a(n-1) +add(a(k)*a(n-5-k), k=1..n-5))
        end:
    seq(a(n), n=0..50);
    # second Maple program:
    a:= n-> coeff(series(RootOf(A=1+A*(x-x^5*(1-A)), A), x, n+1), x, n):
    seq(a(n), n=0..50);
  • Mathematica
    CoefficientList[Series[(1-x+x^5-Sqrt[-4*x^5+(1-x+x^5)^2])/(2*x^5),{x,0,20}],x] (* Vaclav Kotesovec, Mar 20 2014 *)

Formula

G.f. satisfies: A(x) = 1+A(x)*(x-x^5*(1-A(x))).
a(n) = a(n-1) + Sum_{k=1..n-5} a(k)*a(n-5-k) if n>0; a(0) = 1.
Recurrence: (n+5)*a(n) = (2*n+7)*a(n-1) - (n+2)*a(n-2) + (2*n-5)*a(n-5) + 2*(n-4)*a(n-6) - (n-10)*a(n-10). - Vaclav Kotesovec, Mar 20 2014
a(n) = Sum_{k=0..(n-1)/4} C(n-4*k,k)*C(n-4*k,k+1)/(n-4*k) for n>0, a(0)=1. - Vladimir Kruchinin, Jan 21 2019