A212364 Number of Dyck n-paths all of whose ascents and descents have lengths equal to 1 (mod 5).
1, 1, 1, 1, 1, 1, 2, 4, 7, 11, 16, 23, 35, 57, 96, 161, 264, 425, 682, 1106, 1821, 3030, 5055, 8412, 13956, 23145, 38487, 64261, 107673, 180762, 303651, 510187, 857692, 1443597, 2433495, 4108299, 6943862, 11746362, 19883655, 33681015, 57096874, 96874214
Offset: 0
Keywords
Examples
a(0) = 1: the empty path. a(1) = 1: UD. a(5) = 1: UDUDUDUDUD. a(6) = 2: UDUDUDUDUDUD, UUUUUUDDDDDD. a(7) = 4: UDUDUDUDUDUDUD, UDUUUUUUDDDDDD, UUUUUUDDDDDDUD, UUUUUUDUDDDDDD. a(8) = 7: UDUDUDUDUDUDUDUD, UDUDUUUUUUDDDDDD, UDUUUUUUDDDDDDUD, UDUUUUUUDUDDDDDD, UUUUUUDDDDDDUDUD, UUUUUUDUDDDDDDUD, UUUUUUDUDUDDDDDD.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
Crossrefs
Programs
-
Maple
a:= proc(n) option remember; `if`(n=0, 1, a(n-1) +add(a(k)*a(n-5-k), k=1..n-5)) end: seq(a(n), n=0..50); # second Maple program: a:= n-> coeff(series(RootOf(A=1+A*(x-x^5*(1-A)), A), x, n+1), x, n): seq(a(n), n=0..50);
-
Mathematica
CoefficientList[Series[(1-x+x^5-Sqrt[-4*x^5+(1-x+x^5)^2])/(2*x^5),{x,0,20}],x] (* Vaclav Kotesovec, Mar 20 2014 *)
Formula
G.f. satisfies: A(x) = 1+A(x)*(x-x^5*(1-A(x))).
a(n) = a(n-1) + Sum_{k=1..n-5} a(k)*a(n-5-k) if n>0; a(0) = 1.
Recurrence: (n+5)*a(n) = (2*n+7)*a(n-1) - (n+2)*a(n-2) + (2*n-5)*a(n-5) + 2*(n-4)*a(n-6) - (n-10)*a(n-10). - Vaclav Kotesovec, Mar 20 2014
a(n) = Sum_{k=0..(n-1)/4} C(n-4*k,k)*C(n-4*k,k+1)/(n-4*k) for n>0, a(0)=1. - Vladimir Kruchinin, Jan 21 2019