A212363
Number A(n,k) of Dyck n-paths all of whose ascents and descents have lengths equal to 1+k*m (m>=0); square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 5, 1, 1, 1, 1, 2, 14, 1, 1, 1, 1, 1, 4, 42, 1, 1, 1, 1, 1, 2, 8, 132, 1, 1, 1, 1, 1, 1, 4, 17, 429, 1, 1, 1, 1, 1, 1, 2, 7, 37, 1430, 1, 1, 1, 1, 1, 1, 1, 4, 12, 82, 4862, 1, 1, 1, 1, 1, 1, 1, 2, 7, 22, 185, 16796, 1
Offset: 0
A(3,0) = 1: UDUDUD.
A(3,1) = 5: UDUDUD, UDUUDD, UUDDUD, UUDUDD, UUUDDD.
A(4,2) = 4: UDUDUDUD, UDUUUDDD, UUUDDDUD, UUUDUDDD.
A(5,2) = 8: UDUDUDUDUD, UDUDUUUDDD, UDUUUDDDUD, UDUUUDUDDD, UUUDDDUDUD, UUUDUDDDUD, UUUDUDUDDD, UUUUUDDDDD.
A(5,3) = 4: UDUDUDUDUD, UDUUUUDDDD, UUUUDDDDUD, UUUUDUDDDD.
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, 1, 1, ...
1, 2, 1, 1, 1, 1, 1, 1, ...
1, 5, 2, 1, 1, 1, 1, 1, ...
1, 14, 4, 2, 1, 1, 1, 1, ...
1, 42, 8, 4, 2, 1, 1, 1, ...
1, 132, 17, 7, 4, 2, 1, 1, ...
1, 429, 37, 12, 7, 4, 2, 1, ...
Columns k=0-10 give:
A000012,
A000108,
A004148,
A023432,
A023427,
A212364,
A212365,
A212366,
A212367,
A212368,
A212369.
-
A:= proc(n, k) option remember;
`if`(k=0, 1, `if`(n=0, 1, A(n-1, k)
+add(A(j, k)*A(n-k-j, k), j=1..n-k)))
end:
seq(seq(A(n, d-n), n=0..d), d=0..15);
# second Maple program:
A:= (n, k)-> `if`(k=0, 1, coeff(series(RootOf(
A||k=1+A||k*(x-x^k*(1-A||k)), A||k), x, n+1), x, n)):
seq(seq(A(n, d-n), n=0..d), d=0..15);
-
A[n_, k_] := A[n, k] = If[k == 0, 1, If[n == 0, 1, A[n-1, k] + Sum[A[j, k]*A[n-k-j, k], {j, 1, n-k}]]]; Table[Table[A[n, d-n], {n, 0, d}], {d, 0, 15}] // Flatten (* Jean-François Alcover, Jan 15 2014, translated from first Maple program *)
A365699
G.f. satisfies A(x) = 1 + x^5*A(x)^2 / (1 - x*A(x)).
Original entry on oeis.org
1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 3, 6, 10, 15, 21, 33, 57, 101, 175, 291, 477, 791, 1341, 2310, 3986, 6839, 11681, 19966, 34300, 59245, 102647, 177963, 308483, 534973, 929147, 1616981, 2818967, 4920299, 8594665, 15023561, 26283971, 46030771, 80695333, 141593087
Offset: 0
-
a(n) = sum(k=0, n\5, binomial(n-4*k-1, n-5*k)*binomial(n-3*k+1, k)/(n-3*k+1));
A365700
G.f. satisfies A(x) = 1 + x^5*A(x)^3 / (1 - x*A(x)).
Original entry on oeis.org
1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 4, 8, 13, 19, 26, 46, 88, 163, 284, 466, 781, 1369, 2468, 4449, 7856, 13724, 24084, 42788, 76759, 137785, 246418, 439757, 786132, 1411148, 2541368, 4581906, 8259500, 14889781, 26871106, 48573823, 87934175, 159333544, 288857216
Offset: 0
-
terms = 43; A[] = 0; Do[A[x] = 1 + x^5*A[x]^3 / (1 - x*A[x])+ O[x]^terms // Normal, terms]; CoefficientList[A[x], x] (* Stefano Spezia, May 29 2025 *)
-
a(n) = sum(k=0, n\5, binomial(n-4*k-1, n-5*k)*binomial(n-2*k+1, k)/(n-2*k+1));
A365701
G.f. satisfies A(x) = 1 + x^5*A(x)^4 / (1 - x*A(x)).
Original entry on oeis.org
1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 5, 10, 16, 23, 31, 62, 128, 243, 423, 686, 1192, 2223, 4223, 7843, 13991, 24856, 45108, 83673, 156223, 288535, 527971, 966803, 1784663, 3319988, 6183424, 11483613, 21284475, 39499855, 73558147, 137347615, 256616567, 479231240
Offset: 0
-
a(n) = sum(k=0, n\5, binomial(n-4*k-1, n-5*k)*binomial(n-k+1, k)/(n-k+1));
A365702
G.f. satisfies A(x) = 1 + x^5*A(x)^5 / (1 - x*A(x)).
Original entry on oeis.org
1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 6, 12, 19, 27, 36, 81, 177, 341, 592, 951, 1726, 3417, 6766, 12812, 22951, 41531, 78222, 151291, 291957, 550015, 1024683, 1924543, 3671017, 7063893, 13532120, 25730347, 48840523, 93154161, 178806493, 343926597, 660308308, 1265195467
Offset: 0
-
a(n) = sum(k=0, n\5, binomial(n-4*k-1, n-5*k)*binomial(n+1, k))/(n+1);
A365698
G.f. satisfies A(x) = 1 + x^5 / (1 - x*A(x)).
Original entry on oeis.org
1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 4, 7, 11, 16, 22, 31, 47, 76, 126, 207, 331, 517, 801, 1251, 1987, 3206, 5212, 8465, 13677, 21997, 35341, 56937, 92169, 149860, 244274, 398383, 649379, 1058055, 1724575, 2814475, 4600923, 7533150, 12347908, 20252837, 33230545
Offset: 0
-
a(n) = sum(k=0, n\5, binomial(n-4*k-1, n-5*k)*binomial(n-5*k+1, k)/(n-5*k+1));
A365734
G.f. satisfies A(x) = 1 + x*A(x) / (1 - x^5*A(x)^2).
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 2, 5, 11, 21, 36, 58, 94, 163, 306, 599, 1170, 2229, 4140, 7596, 14002, 26228, 49979, 96212, 185491, 356255, 681247, 1300680, 2488500, 4782037, 9231306, 17875306, 34656389, 67194497, 130263382, 252631688, 490513867, 953923030, 1858136173, 3624102244
Offset: 0
-
a(n) = sum(k=0, n\5, binomial(n-4*k-1, k)*binomial(n-3*k+1, n-5*k)/(n-3*k+1));
A365735
G.f. satisfies A(x) = 1 + x*A(x) / (1 - x^5*A(x)^3).
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 2, 6, 16, 36, 71, 128, 223, 403, 796, 1706, 3775, 8252, 17485, 35986, 72988, 148594, 307833, 650947, 1395846, 3004732, 6443836, 13732127, 29134320, 61792707, 131525272, 281463507, 605273669, 1305373379, 2817407854, 6077804871, 13103021422
Offset: 0
-
a(n) = sum(k=0, n\5, binomial(n-4*k-1, k)*binomial(n-2*k+1, n-5*k)/(n-2*k+1));
A365736
G.f. satisfies A(x) = 1 + x*A(x) / (1 - x^5*A(x)^4).
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 2, 7, 22, 57, 127, 254, 478, 903, 1838, 4148, 10012, 24417, 58019, 132919, 295699, 649742, 1437719, 3247500, 7504925, 17607055, 41465646, 97197400, 226053017, 522505492, 1205674911, 2790322418, 6495170018, 15209566913, 35761582618
Offset: 0
-
a(n) = sum(k=0, n\5, binomial(n-4*k-1, k)*binomial(n-k+1, n-5*k)/(n-k+1));
Showing 1-9 of 9 results.