cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A212384 Number of Dyck n-paths all of whose ascents have lengths equal to 1 (mod 4).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 7, 22, 57, 128, 268, 573, 1343, 3434, 9038, 23374, 58649, 144400, 355992, 892336, 2280020, 5892301, 15253305, 39347067, 101177783, 260255812, 671941182, 1743500452, 4542147622, 11858732144, 30983904244, 80982376879, 211831943129, 554905957520
Offset: 0

Views

Author

Alois P. Heinz, May 12 2012

Keywords

Comments

Lengths of descents are unrestricted.
The radius of convergence of g.f. A(x) is r = 4*(1-2*s+s^2)/(s*(4*s-3)) = 0.36467312501521477251..., where s = A(r) is described below. - Vaclav Kotesovec, Mar 21 2014

Examples

			a(0) = 1: the empty path.
a(1) = 1: UD.
a(5) = 2: UDUDUDUDUD, UUUUUDDDDD.
a(6) = 7: UDUDUDUDUDUD, UDUUUUUDDDDD, UUUUUDDDDDUD, UUUUUDDDDUDD, UUUUUDDDUDDD, UUUUUDDUDDDD, UUUUUDUDDDDD.
		

Crossrefs

Column k=4 of A212382.

Programs

  • Maple
    b:= proc(x, y, u) option remember;
          `if`(x<0 or  y b(n$2, true):
    seq(a(n), n=0..40);
    # second Maple program:
    a:= n-> coeff(series(RootOf(A=1+x*A/(1-(x*A)^4), A), x, n+1), x, n):
    seq(a(n), n=0..40);
  • Mathematica
    a[n_] := Sum[Binomial[3k-2n-1, n-k]*Binomial[n+1, 4k-3n], {k, 0, n}]/(n+1);
    Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Apr 03 2017, after Vladimir Kruchinin *)
  • Maxima
    a(n):=sum(binomial(3*k-2*n-1,n-k)*binomial(n+1,4*k-3*n),k,0,n)/(n+1); /* Vladimir Kruchinin, Mar 05 2016 */
    
  • PARI
    a(n) = sum(k=0, n, binomial(3*k-2*n-1,n-k)*binomial(n+1,4*k-3*n))/(n+1); \\ Michel Marcus, Mar 05 2016

Formula

G.f. satisfies: A(x) = 1+x*A(x)/(1-(x*A(x))^4).
a(n) ~ (s*(4*s-3))^(n+3/2) / (sqrt(Pi) * sqrt(5*s-3) * n^(3/2) * 2^(2*n+9/2) * (s-1)^(2*n+7/2)), where s = 1.880470225526517115847397... is the root of the equation 283 - 2156*s + 7312*s^2 - 14400*s^3 + 17920*s^4 - 14336*s^5 + 7168*s^6 - 2048*s^7 + 256*s^8 = 0. - Vaclav Kotesovec, Mar 21 2014
a(n) = Sum_{k=0..n} (binomial(3*k-2*n-1,n-k)*binomial(n+1,4*k-3*n))/(n+1). - Vladimir Kruchinin, Mar 05 2016