cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A212386 Number of Dyck n-paths all of whose ascents have lengths equal to 1 (mod 6).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 9, 37, 121, 331, 793, 1718, 3454, 6646, 12841, 26589, 61813, 158918, 426401, 1134431, 2914055, 7171539, 16967745, 39008002, 88529366, 202057561, 471422866, 1133448790, 2799775102, 7026467132, 17684574313, 44192085565, 109081884957
Offset: 0

Views

Author

Alois P. Heinz, May 12 2012

Keywords

Comments

Lengths of descents are unrestricted.

Examples

			a(0) = 1: the empty path.
a(1) = 1: UD.
a(7) = 2: UDUDUDUDUDUDUD, UUUUUUUDDDDDDD.
a(8) = 9: UDUDUDUDUDUDUDUD, UDUUUUUUUDDDDDDD, UUUUUUUDDDDDDDUD, UUUUUUUDDDDDDUDD, UUUUUUUDDDDDUDDD, UUUUUUUDDDDUDDDD, UUUUUUUDDDUDDDDD, UUUUUUUDDUDDDDDD, UUUUUUUDUDDDDDDD.
		

Crossrefs

Column k=6 of A212382.

Programs

  • Maple
    b:= proc(x, y, u) option remember;
          `if`(x<0 or  y b(n$2, true):
    seq(a(n), n=0..40);
    # second Maple program
    a:= n-> coeff(series(RootOf(A=1+x*A/(1-(x*A)^6), A), x, n+1), x, n):
    seq(a(n), n=0..40);
  • Mathematica
    a[n_] := Sum[Binomial[5k-4n-1, n-k]*Binomial[n+1, 6k-5n], {k, 0, n}]/(n+1);
    Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Apr 03 2017, after Vladimir Kruchinin *)
  • Maxima
    a(n):=sum(binomial(5*k-4*n-1, n-k)*binomial(n+1, 6*k-5*n), k, 0, n)/(n+1); /* Vladimir Kruchinin, Mar 05 2016 */

Formula

G.f. satisfies: A(x) = 1+x*A(x)/(1-(x*A(x))^6).
a(n) ~ s^2 / (n^(3/2) * r^(n-1/2) * sqrt(2*Pi*p*(s-1)*(1+s/(1+p*(s-1))))), where p = 6 and r = 0.3925132712580446244..., s = 1.876653786643058101... are roots of the system of equations r = p*(s-1)^2 / (s*(1-p+p*s)), (r*s)^p = (s-1-r*s)/(s-1). - Vaclav Kotesovec, Jul 16 2014
a(n) = Sum_{k=0..n} (binomial(5*k-4*n-1,n-k)*binomial(n+1,6*k-5*n))/(n+1). - Vladimir Kruchinin, Mar 05 2016