cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A212429 a(n) is the LCM of denominators of polynomials of degree n which are integer-valued on primes together with their first divided differences.

Original entry on oeis.org

1, 1, 2, 4, 48, 96, 1152, 2304, 276480, 552960, 6635520, 13271040, 33443020800, 66886041600, 802632499200, 1605264998400, 385263599616000, 770527199232000, 194172854206464000, 388345708412928000, 512616335105064960000, 1025232670210129920000
Offset: 1

Views

Author

Jean-Luc Chabert, Jun 21 2012

Keywords

Comments

a(n) is also the n-th Bhargava's factorial n_P^{{1}} of the set P of primes with respect to the first divided difference.

Examples

			a(5) = 48 because f(x) = (x-1)(x-2)(x-3)(x-5)(x-7)/48 satisfies f(p) and (f(p)-f(q))/(p-q) are integers for all primes p,q.
		

Crossrefs

Cf. A053657.

Programs

  • Maple
    a:= proc(n) local i, p, wp, r;
          r:=1;
          for i do p:= ithprime(i);
            wp:= p^(w(p,n-1));
            if wp=1 then break fi;
            r:= r*wp
          od; r
        end:
    w:= proc(p, n) local d, k, r;
          r:= 0;
          for k from 0 do d:= floor(n/((p-1)*p^k));
            if d=0 then break fi;
            r:= r+d;
          od;
          r -t(n,p)
        end:
    t:= proc(n, p) local h, q;
          q:= n/(p-1);
          for h from 0 while q>= p^h do od; h
        end:
    seq (a(n), n=1..30);  # Alois P. Heinz, Jun 25 2012
  • Mathematica
    a[n_] := Module[{i, p, wp, r}, r = 1; For[i = 1, True, i++, p = Prime[i]; wp = p^w[p, n - 1]; If[wp == 1, Break[]]; r = r*wp]; r];
    w[p_, n_] := Module[{d, k, r}, r = 0; For[k = 0, True, k++, d = Floor[n/((p - 1)*p^k)]; If[d == 0, Break[]]; r = r + d]; r - t[n, p]];
    t[n_, p_] := Module[{h, q}, q = n/(p - 1); For[h = 0, q >= p^h , h++]; h];
    a /@ Range[1, 30] (* Jean-François Alcover, Oct 14 2019, after Alois P. Heinz *)

Formula

a(n) = Prod_{p prime} p^w_p(n-1) where w_p(n) = Sum_{k>=0} floor(n / ((p-1)*p^k)) - t_{p,n} and p^(t_{p,n}-1) <= n/(p-1) < p^t_{p,n}.