A053657 a(n) = Product_{p prime} p^{ Sum_{k>=0} floor[(n-1)/((p-1)p^k)]}.
1, 2, 24, 48, 5760, 11520, 2903040, 5806080, 1393459200, 2786918400, 367873228800, 735746457600, 24103053950976000, 48206107901952000, 578473294823424000, 1156946589646848000, 9440684171518279680000, 18881368343036559360000, 271211974879377138647040000
Offset: 1
A302290 a(n) is the 2-norm of denominators of two-variable polynomials of degree n which are integer-valued.
1, 2, 1, 2, 4, 2, 1, 4, 5, 2, 4, 8, 4, 2, 5, 6, 5, 4, 8, 10, 5, 4, 9, 10, 4, 8, 16, 8, 4, 10, 9, 6, 9, 12, 12, 12, 9, 8, 13, 12, 8, 16, 20, 10, 9, 14, 13, 12, 12, 18, 21, 12, 9, 18, 20, 8, 16, 32, 16, 8, 20, 18, 9, 14, 25, 20, 16, 20, 17, 16, 17, 20, 24, 24, 24, 20, 17, 18, 21, 22, 20, 28, 29, 16, 17, 28, 24
Offset: 0
Keywords
Comments
This is the 2-sequence of integer-valued polynomials of 2-variables. It can be shown that this also the 2-sequence of the homogeneous 3-variable integer valued polynomials where one of the variables is restricted to evaluate at odd values.
a(n) is also the n-th Bhargava's factorial when generalized to the two-variable case.
Links
- M. Bhargava, On P-orderings, Integer-Valued Polynomials, and Ultrametric Analysis, J. Amer. Math. Soc., 22 (2009), 963-993.
- S. Evrard, Bhargava's factorial in several variables, Journal of Algebra, 372 (2012), 134-148.
Crossrefs
Cf. A212429.
Formula
a(n) = 2^{k-1} if n = 2^k-k-1
a(2(2^k-k-1)-n) if 2^k-k-1 < n < 2^k-1
a(2(2^k-k-1)-n)+ 2a(n-2^k+1) if 2^k-1 <= n <= 2(2^k-k-1)
2a(n-2^k+1) if 2(2^k-k-1) < n < 2^{k+1}-k-2
where k is such that 2^k-k-1<= n.
Comments
Examples
References
Links
Crossrefs
Programs
Maple
Mathematica
PARI
PARI
PARI
Formula
Extensions