cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A212442 G.f.: exp( Sum_{n>=1} A002203(n)^3 * x^n/n ), where A002203 is the companion Pell numbers.

Original entry on oeis.org

1, 8, 140, 1864, 26602, 373080, 5253564, 73911192, 1040045475, 14634444720, 205922568360, 2897549559600, 40771618763540, 573700205699920, 8072574516567400, 113589743388536528, 1598328982089075749, 22490195492277648120, 316461065874934143252
Offset: 0

Views

Author

Paul D. Hanna, May 17 2012

Keywords

Comments

More generally, exp(Sum_{k>=1} A002203(k)^(2*n+1) * x^k/k) = Product_{k=0..n} 1/(1 - (-1)^(n-k)*A002203(2*k+1)*x - x^2)^binomial(2*n+1,n-k).
Compare to g.f. exp(Sum_{k>=1} A002203(k) * x^k/k) = 1/(1-2*x-x^2).

Examples

			G.f.: A(x) = 1 + 8*x + 140*x^2 + 1864*x^3 + 26602*x^4 + 373080*x^5 + ...
where
log(A(x)) = 2^3*x + 6^3*x^2/2 + 14^3*x^3/3 + 34^3*x^4/4 + 82^3*x^5/5 + 198^3*x^6/6 + 478^3*x^7/7 + 1154^3*x^8/8 + ... + A002203(n)^3*x^n/n + ...
Also, the g.f. equals the infinite product:
A(x) = 1/( (1-2*x-x^2)^4 * (1-6*x^2+x^4)^16 * (1-14*x^3-x^6)^64 * (1-34*x^4+x^8)^280 * (1-82*x^5-x^10)^1344 * (1-198*x^6+x^12)^6496 * ... * (1 - A002203(n)*x^n + (-1)^n*x^(2*n))^A212443(n) * ...).
The exponents in these products begin:
A212443 = [4, 16, 64, 280, 1344, 6496, 32640, 166320, 862400, ...].
The companion Pell numbers begin (at offset 1):
A002203 = [2, 6, 14, 34, 82, 198, 478, 1154, 2786, 6726, 16238, ...].
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[1/((1+2x-x^2)^3(1-14x-x^2)),{x,0,30}],x] (* or *) LinearRecurrence[{8,76,136,-38,-136,76,-8,-1},{1,8,140,1864,26602,373080,5253564,73911192},30] (* Harvey P. Dale, Feb 15 2015 *)
  • PARI
    /* Subroutine for the PARI programs that follow: */
    {A002203(n)=polcoeff(2*x*(1+x)/(1-2*x-x^2+x*O(x^n)),n)}
    
  • PARI
    /* G.F. by Definition: */
    {a(n)=polcoeff(exp(sum(k=1, n, A002203(k)^3*x^k/k)+x*O(x^n)), n)}
    
  • PARI
    /* G.F. as a Finite Product: */
    {a(n, m=1)=polcoeff(prod(k=0, m, 1/(1 - (-1)^(m-k)*A002203(2*k+1)*x - x^2+x*O(x^n))^binomial(2*m+1, m-k)), n)}
    
  • PARI
    /* G.F. as an Infinite Product: */
    {A212443(n)=(1/n)*sumdiv(n,d, moebius(n/d)*A002203(d)^2)}
    {a(n)=polcoeff(1/prod(m=1,n, (1 - A002203(m)*x^m + (-1)^m*x^(2*m) +x*O(x^n))^A212443(m)),n)}
    for(n=0,30,print1(a(n),", "))

Formula

G.f.: 1 / ( (1+2*x-x^2)^3 * (1-14*x-x^2) ).
G.f.: 1 / Product_{n>=1} (1 - A002203(n)*x^n + (-1)^n*x^(2*n))^A212443(n) where A212443(n) = (1/n)*Sum_{d|n} moebius(n/d)*A002203(d)^2.
a(0)=1, a(1)=8, a(2)=140, a(3)=1864, a(4)=26602, a(5)=373080, a(6)=5253564, a(7)=73911192, a(n) = 8*a(n-1) + 76*a(n-2) + 136*a(n-3) - 38*a(n-4) - 136*a(n-5) + 76*a(n-6) - 8*a(n-7) - a(n-8). - Harvey P. Dale, Feb 15 2015