cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A212490 Least number m > 1 such that A000203(x)*x = m has exactly n solutions.

Original entry on oeis.org

6, 336, 333312, 5418319872, 1584858562560
Offset: 1

Views

Author

Naohiro Nomoto, May 18 2012

Keywords

Comments

6 = 6.
336 = 6*28*2.
333312 = 6*28*496*2*2.
5418319872 = 6*28*496*8128*2*2*2.
a(6) > 5*10^14. - Michel Marcus and David A. Corneth, Nov 01 2020
From David A. Corneth, Nov 01 2020: (Start)
sigma(n)/n increases to a record in A004394. This can be used to limit the checked divisors of some candidate m.
For n >= 6, If gcd(a(4), a(5)) | a(n) then a(n) > 1.1*10^17. If (gcd(a(4), a(5)) * 2047) | a(n) then a(n) > 1.8 * 10^20. (End)
a(6) <= 6*28*496*8128*33550336*137438691328*2*2*2*2*2. - Michel Marcus, Nov 01 2020
From David A. Corneth, Nov 01 2020: (Start)
Using the same as above, a(7) <= 1716908124551996896669734276042690920448.
a(8) <= 7917841189233800244470292555938612387093638081493952626688. (End)
Conjecture: a(n) <= 2^(n-1) * Product_{k=1..n} A000396(k). - Daniel Suteu, Nov 01 2020
From Daniel Suteu, Nov 01 2020: (Start)
a(6) <= 7089671638182002688000,
a(7) <= 106345074572730040320,
a(9) <= 1826980530660612389572800675840. (End)

Examples

			For n=3, 333312 has exactly 3 solutions: sigma(434)*434 = 333312, sigma(372)*372 = 333312, and sigma(336)*336 = 333312; therefore a(3) = 333312.
		

References

  • R. K. Guy, Unsolved Problems in Theory of Numbers, Springer-Verlag, Third Edition, 2004, B11.

Crossrefs

Programs

  • PARI
    isok(k, n) = sumdiv(k, d, d*sigma(d) == k) == n;
    a(n) = my(k=2); while (! isok(k,n), k++); k; \\ Michel Marcus, Oct 28 2020
    
  • PARI
    \\ See Corneth link. David A. Corneth, Nov 01 2020

Extensions

a(5) from Donovan Johnson, May 20 2012

A212327 Numbers k such that A001065(x)*x = k has at least two solutions.

Original entry on oeis.org

36, 62480, 141440, 1245335, 1432640, 2286080, 6680960, 7660880, 27931280, 39685376, 116636864, 179299575, 318047135, 318523136, 358491735, 533718135, 709131500, 1119849500, 1122571695, 1814416175, 2081125376, 3565970135, 3991520000, 4141021500, 4483640576
Offset: 1

Views

Author

Naohiro Nomoto, May 18 2012

Keywords

Comments

Products of pairs of amicable numbers are members of this sequence.

Examples

			For k = 36, A001065(6)*6 = 36, A001065(9)*9 = 36, therefore 36 is a term.
		

Crossrefs

Programs

  • Mathematica
    q[k_] := DivisorSum[k, 1 &, # * (DivisorSigma[1, #] - #) == k &] > 1; Select[Range[23*10^5], q] (* Amiram Eldar, Jul 01 2025 *)
  • PARI
    isok(k) = {my(d = divisors(k, 1), c = 0); for(i = 1, #d, if(d[i][1] * (sigma(d[i][2]) - d[i][1]) == k, c++; if(c == 2, break))); c == 2;} \\ Amiram Eldar, Jul 01 2025

Extensions

a(9)-a(25) from Donovan Johnson, May 21 2012

A212373 Numbers n such that A001065(x)*x = n has at least two solutions, where x is an abundant number.

Original entry on oeis.org

141440, 2286080, 6680960, 1119849500, 2081125376, 3991520000, 4141021500, 9644638208, 23664804800, 32662630400, 37516855536, 67994319888, 577461690368, 618169892864, 627198842816, 4132702579824, 4949713492400, 5025386326400, 5579119296000, 9013476012156
Offset: 1

Views

Author

Naohiro Nomoto, May 18 2012

Keywords

Examples

			Example: For n=141440, A001065(340)*340 = 141440, A001065(320)*320 = 141440, A001065(340) > 340, A001065(320) > 320, therefore 141440 is included in this sequence.
		

Crossrefs

Extensions

a(9)-a(20) from Donovan Johnson, May 21 2012
Showing 1-3 of 3 results.