cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A337873 Numbers m such that the equation m = k*sigma(k) has more than one solution.

Original entry on oeis.org

336, 5952, 10080, 27776, 44352, 60480, 61152, 97536, 102816, 127680, 178560, 185472, 196560, 260400, 292320, 333312, 455168, 472416, 578592, 635712, 758016, 785664, 833280, 961632, 1083264, 1179360, 1189440, 1270752, 1330560, 1530816, 1717632, 1815072, 1821312, 1834560
Offset: 1

Views

Author

Bernard Schott, Sep 27 2020

Keywords

Comments

The map k -> k*sigma(k) = m is not injective (A064987), this sequence lists in increasing order the integers m that have several preimages.
These terms m satisfy A327153(m) > 1.
If 2^p-1 and 2^r-1 are distinct Mersenne primes (A000668), then k = (2^p-1)* 2^(r-1) and q = (2^r-1) * 2^(p-1) satisfy k*sigma(k) = q*sigma(q) = m = (2^p-1) * (2^r-1) * 2^(p+r-1) [see examples a(1) and a(2)].
The multiplicativity of sigma(k) ensures an infinity of solutions and thus of terms m [see example a(3)].

Examples

			For a(1): 12 * sigma(12) = 14 * sigma(14) = 336 with p=2 and r=3.
For a(2): 48 * sigma(48) = 62 * sigma(62) = 5952 with p=2 and r=5.
For a(3): 60 * sigma(60) = 70 * sigma(70) = 10080 with 60/12 = 70/14 = 5.
a(16) = 333312 is the smallest term with 3 preimages because 336 * sigma(336) = 372 * sigma(372) = 434 * sigma(434) = 333312.
		

References

  • Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004, Section B11, p. 101-102.

Crossrefs

Cf. A327153. Subsequence of A327165.
Cf. A212490, A337874 (preimages), A337875 (primitive terms).

Programs

  • Mathematica
    m = 2*10^6; v = Table[0, {m}]; Do[i = n*DivisorSigma[1, n]; If[i <= m, v[[i]]++], {n, 1, Floor@Sqrt[m]}]; Position[v, ?(# > 1 &)] // Flatten (* _Amiram Eldar, Sep 28 2020 *)
  • PARI
    upto(n) = {m = Map(); res = List(); n = sqrtint(n); for(i = 1, n, c = i*sigma(i); if(mapisdefined(m, c), listput(res, c); mapput(m, c, mapget(m, c) + 1) , mapput(m, c, 1); ) ); listsort(res, 1); select(x -> x <= (n+1)^2, res) } \\ David A. Corneth, Sep 27 2020
    
  • PARI
    isok(m) = {my(nb=0); fordiv(m, d, if (d*sigma(d) == m, nb++; if (nb>1, return(1)));); return (0);} \\ Michel Marcus, Sep 29 2020

Extensions

More terms from David A. Corneth, Sep 27 2020

A212327 Numbers k such that A001065(x)*x = k has at least two solutions.

Original entry on oeis.org

36, 62480, 141440, 1245335, 1432640, 2286080, 6680960, 7660880, 27931280, 39685376, 116636864, 179299575, 318047135, 318523136, 358491735, 533718135, 709131500, 1119849500, 1122571695, 1814416175, 2081125376, 3565970135, 3991520000, 4141021500, 4483640576
Offset: 1

Views

Author

Naohiro Nomoto, May 18 2012

Keywords

Comments

Products of pairs of amicable numbers are members of this sequence.

Examples

			For k = 36, A001065(6)*6 = 36, A001065(9)*9 = 36, therefore 36 is a term.
		

Crossrefs

Programs

  • Mathematica
    q[k_] := DivisorSum[k, 1 &, # * (DivisorSigma[1, #] - #) == k &] > 1; Select[Range[23*10^5], q] (* Amiram Eldar, Jul 01 2025 *)
  • PARI
    isok(k) = {my(d = divisors(k, 1), c = 0); for(i = 1, #d, if(d[i][1] * (sigma(d[i][2]) - d[i][1]) == k, c++; if(c == 2, break))); c == 2;} \\ Amiram Eldar, Jul 01 2025

Extensions

a(9)-a(25) from Donovan Johnson, May 21 2012

A338381 Smallest number m such that tau(k) * k = m has exactly n solutions when tau(k) is the number of divisors of k.

Original entry on oeis.org

1, 108, 2688, 21000000, 8400000
Offset: 1

Views

Author

Bernard Schott, Oct 23 2020

Keywords

Comments

The map k -> k*tau(k) = m is not injective (A038040), this sequence lists the smallest integers m that have exactly n preimages.
This sequence is not increasing with a(5) < a(4).
a(6) <= 4124832465600000, a(7) <= 33195080318400000. - David A. Corneth, Oct 28 2020
a(6) <= 1508867287200000, a(8) <= 2544150895374925200000, a(9) <= 55487699012097891000000. - Daniel Suteu, Oct 28 2020

Examples

			a(1) = 1 because 1 * tau(1) = 1.
a(2) = 108 because 18 * tau(18) = 27 * tau(27) = 108 and 108 is the smallest number with 2 preimages.
a(3) = 2688 because 168 * tau(168) = 192 * tau(192) = 224 * tau(224) = 2688 and 2688 is the smallest number with 3 preimages.
a(4) = 21000000 and the corresponding 4 values of k are: 210000, 350000, 375000, 500000.
a(5) = 8400000 and the corresponding 5 values of k are: 105000, 120000, 140000, 175000, 200000. Thanks to _Amiram Eldar_ for these values of k for a(4) and a(5).
		

References

  • Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004, Section B12, p. 102-103.
  • D. Wells, The Penguin Dictionary of Curious and Interesting Numbers, Revised Edition, Penguin Books, London, England, 1997, entry 168, page 127.

Crossrefs

Cf. A212490 (similar for k*sigma(k)).

Programs

  • PARI
    isok(k, n) = sumdiv(k, d, d*numdiv(d) == k) == n;
    a(n) = my(k=1); while (! isok(k,n), k++); k; \\ Michel Marcus, Oct 28 2020

Extensions

a(4)-a(5) from Amiram Eldar, Oct 23 2020

A212373 Numbers n such that A001065(x)*x = n has at least two solutions, where x is an abundant number.

Original entry on oeis.org

141440, 2286080, 6680960, 1119849500, 2081125376, 3991520000, 4141021500, 9644638208, 23664804800, 32662630400, 37516855536, 67994319888, 577461690368, 618169892864, 627198842816, 4132702579824, 4949713492400, 5025386326400, 5579119296000, 9013476012156
Offset: 1

Views

Author

Naohiro Nomoto, May 18 2012

Keywords

Examples

			Example: For n=141440, A001065(340)*340 = 141440, A001065(320)*320 = 141440, A001065(340) > 340, A001065(320) > 320, therefore 141440 is included in this sequence.
		

Crossrefs

Extensions

a(9)-a(20) from Donovan Johnson, May 21 2012

A212489 Numbers n such that A001065(x)*x = n has at least two solutions, where x is a deficient number.

Original entry on oeis.org

1245335, 318047135, 358491735, 533718135, 709131500, 1122571695, 1814416175, 3565970135, 4486354631, 14336906175, 14827262351, 22805269551, 36360557831, 43971297884, 72370166375, 99254203895, 102204949847, 145262865020, 156161459559, 173741271935, 231267964895
Offset: 1

Views

Author

Naohiro Nomoto, May 18 2012

Keywords

Examples

			Example: For n=1245335, A001065(1955)*1955 = 1245335, A001065(2093)*2093 = 1245335, A001065(1955) < 1955, A001065(2093) < 2093, therefore 1245335 is included in this sequence.
		

Crossrefs

Extensions

a(6)-a(21) from Donovan Johnson, May 21 2012
Showing 1-5 of 5 results.