A337874
Table read by rows, in which the n-th row lists all the preimages k, in increasing order, such that k*sigma(k) = A337873(n).
Original entry on oeis.org
12, 14, 48, 62, 60, 70, 112, 124, 132, 154, 160, 189, 156, 182, 192, 254, 204, 238, 228, 266, 240, 310, 276, 322, 315, 351, 300, 350, 348, 406, 336, 372, 434, 448, 508, 444, 518, 492, 574, 516, 602, 564, 658, 528, 682, 560, 620, 636, 742
Offset: 1
The table begins:
12, 14;
48, 62;
60, 70;
112, 124;
132, 154;
160, 189;
...
1st row is (12, 14) because 12 * sigma(12) = 14 * sigma(14) = 336 = A337873(1) with p = 2 and r = 3.
2nd row is (48, 62) because 48 * sigma(48) = 62 * sigma(62) = 5952 = A337873(2) with p = 2 and r = 5.
16th row is (336, 372, 434) because 336 * sigma(336) = 372 * sigma(372) = 434 * sigma(434) = 333312 = A337873(16).
- Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004, Section B11, p. 101-102.
-
m = 10^6; v = Table[{}, {m}]; Do[i = n*DivisorSigma[1, n]; If[i <= m, AppendTo[v[[i]], n]], {n, 1, Floor@Sqrt[m]}]; Select[v, Length[#] > 1 &] // Flatten (* Amiram Eldar, Oct 06 2020 *)
-
upto(n) = {m = Map(); res = List(); n = sqrtint(n); w = []; for(i = 1, n, c = i*sigma(i); if(mapisdefined(m, c), listput(res, c); l = mapget(m, c); listput(l, i); mapput(m, c, l) , mapput(m, c, List(i)); ) ); listsort(res, 1); v = select(x -> x <= (n+1)^2, res); for(i = 1, #v, w = concat(w, Vec(mapget(m, v[i]))) ); w } \\ David A. Corneth, Oct 07 2020
A337876
Table read by rows, in which the n-th row lists all the primitive solutions k, in increasing order, such that k*sigma(k) = A337875(n).
Original entry on oeis.org
12, 14, 48, 62, 112, 124, 160, 189, 192, 254, 315, 351, 448, 508, 1984, 2032, 2560, 2728, 5580, 5616, 6156, 6534, 12288, 16382, 22464, 22860, 28672, 32764, 28800, 34000, 42000, 51200, 46500, 51200, 51200, 54250, 72800, 95697, 76230, 80028, 126976, 131056, 119700, 189875
Offset: 1
The table begins:
12, 14;
48, 62;
112, 124;
160, 189;
192, 254;
315, 351;
...
1st row is (12, 14) because 12 * sigma(12) = 14 * sigma(14) = 336 = A337875(1) with p = 2 and r = 3.
2nd row is (48, 62) because 48 * sigma(48) = 62 * sigma(62) = 5952 = A337875(2) with p = 2 and r = 5.
16th row is (42000, 51200), (46500, 51200), (51200, 54250) because 42000 * sigma(42000) = 51200 * sigma(51200), 46500 * sigma(46500) = 51200 * sigma(51200) and 51200 * sigma(51200) = sigma54250 * sigma(54250) = 649999584000 = A337875(16). These 3 primitive solutions corresponding to the smallest m = 649999584000 have been found by _Michel Marcus_. The three other possible solutions (42000, 46500), (42000, 54250), (46500, 54250) are not primitive.
18th row is (76230, 80028) because 76230 * sigma(76230) = 80028 * sigma(80028) = 18979440480 = A337875(18). Note that 76230 * sigma(76230) = 80028 * sigma(80028) = 84942 * sigma(84942) = 18979440480 = A337873(3266) but (76230, 84942) and (80028, 84942) are not primitive solutions (see detailed example in A337875). These case have been found by _Jinyuan Wang_.
- Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004, Section B11, p. 101-102.
-
process(x, y, resp) = {my(vresp = Vec(resp)); for (i=1, #vresp, if (x/vresp[i][1] == y/vresp[i][2], return(resp));); listput(resp, [x, y]); resp;}
findprim(res, mx) = {my(mp = Map()); my(resp = List()); for (i=1, #res, my(vx = mapget(mx, res[i])); for (j=1, #vx-1, for (k=j+1, #vx, resp = process(vx[j], vx[k], resp);););); resp;}
upto(n) = {my(m = Map(), mx = Map(), res = List(), n = sqrtint(n), resp); for(i = 1, n, my(c = i*sigma(i)); if(mapisdefined(m, c), listput(res, c); mapput(m, c, mapget(m, c) + 1); mapput(mx, c, concat(mapget(mx, c), i)), mapput(m, c, 1); mapput(mx, c, [i]);)); listsort(res, 1); res = Vec(select(x -> x <= (n+1)^2, res)); Vec(findprim(res, mx));}
upto(10^11) \\ Michel Marcus, Oct 20 2020
A337875
Integers that can be written m = k*sigma(k) = q*sigma(q) where (k, q) is a primitive solution of this equation and sigma(m) is the sum of divisors of (m).
Original entry on oeis.org
336, 5952, 27776, 60480, 97536, 196560, 455168, 8062976, 15713280, 97493760, 104282640, 402604032, 1597639680, 1878818816, 2959632000, 6499584000, 15923980800, 18979440480, 33281933312, 54027792000, 102953410560, 103078428672, 103448378880
Offset: 1
For a(1): 12 * sigma(12) = 14 * sigma(14) = 336 with p=2 and r=3.
For a(2): 48 * sigma(48) = 62 * sigma(62) = 5952 with p=2 and r=5.
10080 is not a term: 60 * sigma(60) = 70 * sigma(70) = 10080 but as 60/5 = 12 and 70/5 = 14, hence, this solution that is generated by the first example is not primitive.
For a(4): 160 * sigma(160) = 189 * sigma(189) = 60480 is the smallest example with gcd(k,q) = 1 with k = 2^5*5 = 160 and q = 3^3*7 = 189.
For a(6): 315 * sigma(315) = 351 * sigma(351) = 196560 is the smallest example with k and q both odd.
For a(18): 76230 * sigma(76230) = 80028 * sigma(80028) = 84942 * sigma(84942) = A337873(3266) = 18979440480.
-> 1) for k=76230 and q=84942; with d=11^2, k/11^2=630 and q/11^2=702.
630 * sigma(630) = 702 * sigma(702) = 1179360, hence (76230, 84942) is not a primitive solution;
-> 2) for k=80028 and q=84942; with d=13, k/13=6156 and q/13=6534.
6156 * sigma(6156) = 6534 * sigma(6534) = 104282640, hence (80028, 84942) is not a primitive solution; but
-> 3) for k=76230 and q=80028, there is no common divisor d such that k/d and q/d can satisfy (k/d)*sigma(k/d) = (q/d)*sigma(q/d), so (76239, 80028) is a primitive solution linked to m = 18979440480 that is the term a(18).
- Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004, Section B11, p. 101-102.
-
process(x, y, resp) = {my(vresp = Vec(resp)); for (i=1, #vresp, if (x/vresp[i][1] == y/vresp[i][2], return(resp));); listput(resp, [x, y]); resp;}
findprim(res, mx) = {my(mp = Map()); my(resp = List()); for (i=1, #res, my(vx = mapget(mx, res[i])); for (j=1, #vx-1, for (k=j+1, #vx, resp = process(vx[j], vx[k], resp);););); resp;}
upto(n) = {my(m = Map(), mx = Map(), res = List(), n = sqrtint(n), resp);for(i = 1, n, my(c = i*sigma(i)); if(mapisdefined(m, c), listput(res, c); mapput(m, c, mapget(m, c) + 1); mapput(mx, c, concat(mapget(mx, c), i)), mapput(m, c, 1); mapput(mx, c, [i]);)); listsort(res, 1); res = Vec(select(x -> x <= (n+1)^2, res)); resp = findprim(res, mx); vresp = Vec(resp); vecsort(vector(#vresp, k, vresp[k][1]*sigma(vresp[k][1])),,8);}
upto(10^12) \\ Michel Marcus, Oct 17 2020
A338382
Numbers m such that the equation m = k*tau(k) has more than one solution, where tau(k) is the number of divisors of k.
Original entry on oeis.org
108, 192, 448, 1080, 1512, 1920, 2376, 2688, 2808, 3672, 4104, 4224, 4480, 4968, 4992, 6000, 6264, 6528, 6696, 7296, 7992, 8100, 8640, 8832, 8856, 9288, 9856, 10152, 11136, 11448, 11648, 11904, 12096, 12744, 12960, 13176, 14208, 14400, 14472, 15120, 15232, 15336
Offset: 1
a(1) = 108 because 18 * tau(18) = 27 * tau(27) = 108.
a(2) = 192 because 24 * tau(24) = 32 * tau(32) = 192.
a(3) = 448 because 56 * tau(56) = 64 * tau(64) = 448.
a(8) = 2688 is the smallest term with 3 preimages because 168 * tau(168) = 192 * tau(192) = 224 * tau(224) = 2688.
- Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004, Section B12, p. 102-103.
- D. Wells, The Penguin Dictionary of Curious and Interesting Numbers, Revised Edition, Penguin Books, London, England, 1997, entry 168, page 127.
Cf.
A337873 (similar for k*sigma(k)).
-
solNum[n_] := DivisorSum[n, 1 &, # * DivisorSigma[0, #] == n &]; Select[Range[16000], solNum[#] > 1 &] (* Amiram Eldar, Oct 23 2020 *)
-
isok(m) = {my(nb=0); fordiv(m, d, if (d*numdiv(d) == m, nb++; if (nb>1, return(1))); ); return (0); } \\ Michel Marcus, Oct 24 2020
A338520
Integers that can be expressed as a product d*sigma(d), where sigma is the sum of divisors function, in a single way.
Original entry on oeis.org
1, 6, 12, 28, 30, 56, 72, 117, 120, 132, 180, 182, 306, 360, 380, 496, 552, 672, 702, 775, 792, 840, 870, 992, 1080, 1092, 1406, 1440, 1568, 1584, 1680, 1722, 1836, 1892, 2016, 2160, 2184, 2256, 2280, 2793, 2862, 3276, 3312, 3510, 3540, 3600, 3672, 3696, 3782, 3960
Offset: 1
Cf.
A338519 (similar for number of divisors).
Showing 1-5 of 5 results.
Comments