A337873
Numbers m such that the equation m = k*sigma(k) has more than one solution.
Original entry on oeis.org
336, 5952, 10080, 27776, 44352, 60480, 61152, 97536, 102816, 127680, 178560, 185472, 196560, 260400, 292320, 333312, 455168, 472416, 578592, 635712, 758016, 785664, 833280, 961632, 1083264, 1179360, 1189440, 1270752, 1330560, 1530816, 1717632, 1815072, 1821312, 1834560
Offset: 1
For a(1): 12 * sigma(12) = 14 * sigma(14) = 336 with p=2 and r=3.
For a(2): 48 * sigma(48) = 62 * sigma(62) = 5952 with p=2 and r=5.
For a(3): 60 * sigma(60) = 70 * sigma(70) = 10080 with 60/12 = 70/14 = 5.
a(16) = 333312 is the smallest term with 3 preimages because 336 * sigma(336) = 372 * sigma(372) = 434 * sigma(434) = 333312.
- Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004, Section B11, p. 101-102.
-
m = 2*10^6; v = Table[0, {m}]; Do[i = n*DivisorSigma[1, n]; If[i <= m, v[[i]]++], {n, 1, Floor@Sqrt[m]}]; Position[v, ?(# > 1 &)] // Flatten (* _Amiram Eldar, Sep 28 2020 *)
-
upto(n) = {m = Map(); res = List(); n = sqrtint(n); for(i = 1, n, c = i*sigma(i); if(mapisdefined(m, c), listput(res, c); mapput(m, c, mapget(m, c) + 1) , mapput(m, c, 1); ) ); listsort(res, 1); select(x -> x <= (n+1)^2, res) } \\ David A. Corneth, Sep 27 2020
-
isok(m) = {my(nb=0); fordiv(m, d, if (d*sigma(d) == m, nb++; if (nb>1, return(1)));); return (0);} \\ Michel Marcus, Sep 29 2020
A337876
Table read by rows, in which the n-th row lists all the primitive solutions k, in increasing order, such that k*sigma(k) = A337875(n).
Original entry on oeis.org
12, 14, 48, 62, 112, 124, 160, 189, 192, 254, 315, 351, 448, 508, 1984, 2032, 2560, 2728, 5580, 5616, 6156, 6534, 12288, 16382, 22464, 22860, 28672, 32764, 28800, 34000, 42000, 51200, 46500, 51200, 51200, 54250, 72800, 95697, 76230, 80028, 126976, 131056, 119700, 189875
Offset: 1
The table begins:
12, 14;
48, 62;
112, 124;
160, 189;
192, 254;
315, 351;
...
1st row is (12, 14) because 12 * sigma(12) = 14 * sigma(14) = 336 = A337875(1) with p = 2 and r = 3.
2nd row is (48, 62) because 48 * sigma(48) = 62 * sigma(62) = 5952 = A337875(2) with p = 2 and r = 5.
16th row is (42000, 51200), (46500, 51200), (51200, 54250) because 42000 * sigma(42000) = 51200 * sigma(51200), 46500 * sigma(46500) = 51200 * sigma(51200) and 51200 * sigma(51200) = sigma54250 * sigma(54250) = 649999584000 = A337875(16). These 3 primitive solutions corresponding to the smallest m = 649999584000 have been found by _Michel Marcus_. The three other possible solutions (42000, 46500), (42000, 54250), (46500, 54250) are not primitive.
18th row is (76230, 80028) because 76230 * sigma(76230) = 80028 * sigma(80028) = 18979440480 = A337875(18). Note that 76230 * sigma(76230) = 80028 * sigma(80028) = 84942 * sigma(84942) = 18979440480 = A337873(3266) but (76230, 84942) and (80028, 84942) are not primitive solutions (see detailed example in A337875). These case have been found by _Jinyuan Wang_.
- Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004, Section B11, p. 101-102.
-
process(x, y, resp) = {my(vresp = Vec(resp)); for (i=1, #vresp, if (x/vresp[i][1] == y/vresp[i][2], return(resp));); listput(resp, [x, y]); resp;}
findprim(res, mx) = {my(mp = Map()); my(resp = List()); for (i=1, #res, my(vx = mapget(mx, res[i])); for (j=1, #vx-1, for (k=j+1, #vx, resp = process(vx[j], vx[k], resp);););); resp;}
upto(n) = {my(m = Map(), mx = Map(), res = List(), n = sqrtint(n), resp); for(i = 1, n, my(c = i*sigma(i)); if(mapisdefined(m, c), listput(res, c); mapput(m, c, mapget(m, c) + 1); mapput(mx, c, concat(mapget(mx, c), i)), mapput(m, c, 1); mapput(mx, c, [i]);)); listsort(res, 1); res = Vec(select(x -> x <= (n+1)^2, res)); Vec(findprim(res, mx));}
upto(10^11) \\ Michel Marcus, Oct 20 2020
A337875
Integers that can be written m = k*sigma(k) = q*sigma(q) where (k, q) is a primitive solution of this equation and sigma(m) is the sum of divisors of (m).
Original entry on oeis.org
336, 5952, 27776, 60480, 97536, 196560, 455168, 8062976, 15713280, 97493760, 104282640, 402604032, 1597639680, 1878818816, 2959632000, 6499584000, 15923980800, 18979440480, 33281933312, 54027792000, 102953410560, 103078428672, 103448378880
Offset: 1
For a(1): 12 * sigma(12) = 14 * sigma(14) = 336 with p=2 and r=3.
For a(2): 48 * sigma(48) = 62 * sigma(62) = 5952 with p=2 and r=5.
10080 is not a term: 60 * sigma(60) = 70 * sigma(70) = 10080 but as 60/5 = 12 and 70/5 = 14, hence, this solution that is generated by the first example is not primitive.
For a(4): 160 * sigma(160) = 189 * sigma(189) = 60480 is the smallest example with gcd(k,q) = 1 with k = 2^5*5 = 160 and q = 3^3*7 = 189.
For a(6): 315 * sigma(315) = 351 * sigma(351) = 196560 is the smallest example with k and q both odd.
For a(18): 76230 * sigma(76230) = 80028 * sigma(80028) = 84942 * sigma(84942) = A337873(3266) = 18979440480.
-> 1) for k=76230 and q=84942; with d=11^2, k/11^2=630 and q/11^2=702.
630 * sigma(630) = 702 * sigma(702) = 1179360, hence (76230, 84942) is not a primitive solution;
-> 2) for k=80028 and q=84942; with d=13, k/13=6156 and q/13=6534.
6156 * sigma(6156) = 6534 * sigma(6534) = 104282640, hence (80028, 84942) is not a primitive solution; but
-> 3) for k=76230 and q=80028, there is no common divisor d such that k/d and q/d can satisfy (k/d)*sigma(k/d) = (q/d)*sigma(q/d), so (76239, 80028) is a primitive solution linked to m = 18979440480 that is the term a(18).
- Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004, Section B11, p. 101-102.
-
process(x, y, resp) = {my(vresp = Vec(resp)); for (i=1, #vresp, if (x/vresp[i][1] == y/vresp[i][2], return(resp));); listput(resp, [x, y]); resp;}
findprim(res, mx) = {my(mp = Map()); my(resp = List()); for (i=1, #res, my(vx = mapget(mx, res[i])); for (j=1, #vx-1, for (k=j+1, #vx, resp = process(vx[j], vx[k], resp);););); resp;}
upto(n) = {my(m = Map(), mx = Map(), res = List(), n = sqrtint(n), resp);for(i = 1, n, my(c = i*sigma(i)); if(mapisdefined(m, c), listput(res, c); mapput(m, c, mapget(m, c) + 1); mapput(mx, c, concat(mapget(mx, c), i)), mapput(m, c, 1); mapput(mx, c, [i]);)); listsort(res, 1); res = Vec(select(x -> x <= (n+1)^2, res)); resp = findprim(res, mx); vresp = Vec(resp); vecsort(vector(#vresp, k, vresp[k][1]*sigma(vresp[k][1])),,8);}
upto(10^12) \\ Michel Marcus, Oct 17 2020
A338383
Table read by rows, in which the n-th row lists all the preimages k, in increasing order, such that k*tau(k) = A338382(n).
Original entry on oeis.org
18, 27, 24, 32, 56, 64, 90, 135, 126, 189, 120, 160, 198, 297, 168, 192, 224, 234, 351, 306, 459, 342, 513, 264, 352, 280, 320, 414, 621, 312, 416, 400, 500, 522, 783, 408, 544, 558, 837, 456, 608, 666, 999, 450, 675, 360, 432, 552, 736, 738, 1107, 774, 1161, 616, 704
Offset: 1
The table begins:
18, 27;
24, 32;
56, 64;
90, 135;
126, 189;
120, 160;
198, 297;
168, 192, 224;
...
1st row is (18, 27) because 18 * tau(18) = 27 * tau(27) = 108 = A338382(1).
2nd row is (24, 32) because 24 * tau(24) = 32 * tau(32) = 192 = A338382(2).
8th row is (168, 192, 224), because 168 * tau(168) = 192 * tau(192) = 224 * tau(224) = 2688 = A338382(8); it is the first row with 3 preimages.
- Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004, Section B12, p. 102-103.
- D. Wells, The Penguin Dictionary of Curious and Interesting Numbers, Revised Edition, Penguin Books, London, England, 1997, entry 168, page 127.
Cf.
A337874 (similar for k*sigma(k)).
-
upto(n) = {m = Map(); res = List(); n = n\2; w = []; for(i = 1, n, c = i*numdiv(i); if(mapisdefined(m, c), listput(res, c); l = mapget(m, c); listput(l, i); mapput(m, c, l) , mapput(m, c, List(i)); ) ); listsort(res, 1); v = select(x -> x <= 2*(n+1), res); for(i = 1, #v, w = concat(w, Vec(mapget(m, v[i]))) ); w; } \\ Michel Marcus, Oct 27 2020
A371419
Lesser member of Carmichael's variant of amicable pair: numbers k < m such that s(k) = m and s(m) = k, where s(k) = A371418(k).
Original entry on oeis.org
12, 48, 112, 160, 192, 448, 1984, 12288, 28672, 126976, 196608, 458752, 520192, 786432, 1835008, 2031616, 8126464, 8323072, 33292288, 536805376, 2147221504, 3221225472, 7516192768, 33285996544, 34359476224, 136365211648
Offset: 1
12 is a term since A371418(12) = 14 > 12, and A371418(14) = 12.
-
r[n_] := n/FactorInteger[n][[1, 1]]; s[n_] := r[DivisorSigma[1, n]]; seq = {}; Do[m = s[n]; If[m > n && s[m] == n, AppendTo[seq, n]], {n, 1, 10^6}]; seq
-
f(n) = {my(s = sigma(n)); if(s == 1, 1, s/factor(s)[1, 1]);}
lista(nmax) = {my(m); for(n = 1, nmax, m = f(n); if(m > n && f(m) == n, print1(n, ", ")));}
Showing 1-5 of 5 results.
Comments