A212697 a(n) = 2*n*3^(n-1).
2, 12, 54, 216, 810, 2916, 10206, 34992, 118098, 393660, 1299078, 4251528, 13817466, 44641044, 143489070, 459165024, 1463588514, 4649045868, 14721978582, 46490458680, 146444944842, 460255540932, 1443528742014, 4518872583696, 14121476824050, 44059007691036
Offset: 1
Examples
n=2, b=3, S={00, 01, 02, 10, 11, 12, 20, 21, 22}, main transitions = {(00,01), (00,10), (01,02), (01,12), (02,12), (10,11), (10,20), (11,12), (11,21), (12,22), (20,21), (21,22)}, main transitions count = 12.
References
- M. H. Levitt, Spin Dynamics, Basics of Nuclear Magnetic Resonance, 2nd Edition, John Wiley & Sons, 2007, Section 6 (Mathematical techniques).
- J. A. Pople, W. G. Schneider, H. J. Bernstein, High-Resolution Nuclear Magnetic Resonance, McGraw-Hill, 1959, Chapter 6.
Links
- Stanislav Sykora, Table of n, a(n) for n = 1..100
- John Rafael M. Antalan and Francis Joseph H. Campeña, Distance eigenvalues and forwarding indices of dimension-regular generalized recursive circulant graph of order power of two and three, arXiv:2009.11608[math.CO], 2020.
- Franck Ramaharo, Statistics on some classes of knot shadows, arXiv:1802.07701 [math.CO], 2018.
- Stanislav Sýkora, Magnetic Resonance on OEIS, Stan's NMR Blog (Dec 31, 2014), Retrieved Nov 12, 2019.
- Index entries for linear recurrences with constant coefficients, signature (6,-9).
Crossrefs
Programs
-
GAP
List([1..30], n-> 2*3^(n-1)*n) # G. C. Greubel, Jun 08 2019
-
Magma
[2*3^(n-1)*n: n in [1..30]]; // G. C. Greubel, Jun 08 2019
-
Maple
A212697:=n->2*n*3^(n-1): seq(A212697(n), n=1..30); # Wesley Ivan Hurt, Mar 01 2015
-
Mathematica
Table[Sum[Binomial[n, j] j 2^j, {j, n}], {n, 30}] (* Geoffrey Critzer, Mar 01 2015 *) Table[2*3^(n-1)*n, {n,30}] (* G. C. Greubel, Jun 08 2019 *)
-
PARI
mtrans(n,b) = n*(b-1)*b^(n-1); for (n=1,100,write("b212697.txt",n," ",mtrans(n,3)))
-
Sage
[2*3^(n-1)*n for n in (1..30)] # G. C. Greubel, Jun 08 2019
Formula
a(n) = n*(b-1)*b^(n-1). For this sequence, set b=3.
From R. J. Mathar, Oct 15 2013: (Start)
G.f.: 2*x/(1-3*x)^2.
a(n) = 2*A027471(n+1). (End)
a(n) = Sum_{j=1..n} binomial(n,j)*j*2^j. - Geoffrey Critzer, Mar 01 2015
E.g.f.: 2*x*exp(3*x). - G. C. Greubel, Jun 08 2019
Comments