A212698 Main transitions in systems of n particles with spin 3/2.
3, 24, 144, 768, 3840, 18432, 86016, 393216, 1769472, 7864320, 34603008, 150994944, 654311424, 2818572288, 12079595520, 51539607552, 219043332096, 927712935936, 3917010173952, 16492674416640, 69269232549888, 290271069732864, 1213860837064704, 5066549580791808
Offset: 1
Links
- Stanislav Sykora, Table of n, a(n) for n = 1..100
- Ross La Haye, Binary Relations on the Power Set of an n-Element Set, Journal of Integer Sequences, Vol. 12 (2009), Article 09.2.6.
- Stanislav Sýkora, Magnetic Resonance on OEIS, Stan's NMR Blog (Dec 31, 2014), Retrieved Nov 12, 2019.
- Index entries for linear recurrences with constant coefficients, signature (8,-16).
Crossrefs
Programs
-
Magma
[3*n*4^(n-1): n in [1..30]]; // Vincenzo Librandi, Nov 29 2015
-
Mathematica
Table[Sum[Binomial[n,i] i 3^i,{i,0,n}],{n,1,21}] (* Geoffrey Critzer, Aug 08 2013 *)
-
PARI
mtrans(n, b) = n*(b-1)*b^(n-1); for (n=1, 100, write("b212698.txt", n, " ", mtrans(n, 4)))
Formula
a(n) = n*(b-1)*b^(n-1). For this sequence, set b=4.
a(n) = 3*n*4^(n-1).
a(n) = 3*A002697(n).
From Geoffrey Critzer, Aug 08 2013: (Start)
a(n) = Sum_{i>=0} binomial(n,i)*i*3^i.
E.g.f.: 3*x*exp(4*x). (End)
G.f.: 3*x/(4*x-1)^2. - Colin Barker, Nov 03 2014
From Elmo R. Oliveira, May 24 2025: (Start)
a(n) = 8*a(n-1) - 16*a(n-2) for n > 2.
Comments