cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A212714 Number of (w,x,y,z) with all terms in {1,...,n} and |w-x| >= w + |y-z|.

Original entry on oeis.org

0, 0, 2, 10, 32, 78, 162, 300, 512, 820, 1250, 1830, 2592, 3570, 4802, 6328, 8192, 10440, 13122, 16290, 20000, 24310, 29282, 34980, 41472, 48828, 57122, 66430, 76832, 88410, 101250, 115440, 131072, 148240, 167042, 187578, 209952
Offset: 0

Views

Author

Clark Kimberling, May 24 2012

Keywords

Comments

For a guide to related sequences, see A211795.
a(n) is also the number of inequivalent (modulo C_4 rotations) square n X n grids with squares coming in two colors and two squares have one of the colors. See the formula from A054772. - Wolfdieter Lang, Oct 03 2016

Crossrefs

Programs

  • Magma
    I:=[0,0,2,10,32,78]; [n le 6 select I[n] else 4*Self(n-1)-5*Self(n-2)+5*Self(n-4)-4*Self(n-5)+Self(n-6): n in [1..40]]; // Vincenzo Librandi, Aug 02 2013
  • Mathematica
    t = Compile[{{n, _Integer}}, Module[{s = 0},
    (Do[If[Abs[w - x] >= w + Abs[y - z], s = s + 1],
    {w, 1, #}, {x, 1, #}, {y, 1, #}, {z, 1, #}] &[n]; s)]];
    Map[t[#] &, Range[0, 40]]   (* A212714 *)
    %/2  (* A011864 except for offset *)
    LinearRecurrence[{4, -5, 0, 5, -4, 1}, {0, 0, 2, 10, 32, 78}, 40]
    CoefficientList[Series[(2 x^2 + 2 x^3 + 2 x^4) / (1 - 4 x + 5 x^2 - 5 x^4 + 4 x^5 - x^6), {x, 0, 80}], x] (* Vincenzo Librandi, Aug 02 2013 *)

Formula

a(n) = 4*a(n-1) - 5*a(n-2) + 5*a(n-4) - 4*a(n-5) + a(n-6).
G.f.: (2*x^2 + 2*x^3 + 2*x^4)/(1 - 4*x + 5*x^2 - 5*x^4 + 4*x^5 - x^6).
a(n) = floor(n^4/8). - Wesley Ivan Hurt, Jul 14 2013
a(n) = A054772(n, 2) = A054772(n, n^2-2), n >= 2. - Wolfdieter Lang, Oct 03 2016