cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A212717 Numerator of Sum_{k=1..n} 1/sigma(k).

Original entry on oeis.org

1, 4, 19, 145, 53, 83, 353, 607, 8171, 75359, 78089, 79259, 11657, 2963, 12047, 378137, 386197, 389917, 397171, 2804377, 11344453, 11457293, 11626553, 11694257, 11825297, 11922017, 12023573, 12096113, 12231521, 12287941, 6207443, 6239683, 3140999, 9479417
Offset: 1

Views

Author

Michel Lagneau, May 25 2012

Keywords

Examples

			1, 4/3, 19/12, 145/84, 53/28, 83/42, 353/168, ...
		

Crossrefs

Cf. A000203, A212718 (denominators), A308039, A345327.

Programs

  • Maple
    with(numtheory): a:=n->numer(sum(1/sigma(k), k=1..n)): seq(a(n), n=1..50);
  • Mathematica
    Numerator[Table[Sum[1/DivisorSigma[1,k],{k,1,n}],{n,1,50}]]
    Accumulate[1/DivisorSigma[1,Range[40]]]//Numerator (* Harvey P. Dale, Aug 13 2023 *)

Formula

a(n)/A212718(n) = c * (log(n) + gamma + Sum_{p prime} (p-1)^2*beta(p)*log(p)/(p*alpha(p))) + O(log(n)^(2/3)*log(log(n))^(4/3)/n), where alpha(p) = 1 - ((p-1)^2/p) * Sum_{k>=1} 1/((p^k-1)*(p^(k+1)-1)), beta(p) = Sum_{k>=1} k/((p^k-1)*(p^(k+1)-1)), and c = Product_{p prime} alpha(p) = A308039 (Sita Ramaiah and Suryanarayana, 1979). - Amiram Eldar, Oct 16 2022