cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A212760 Number of (w,x,y,z) with all terms in {0,...,n}, w even, and x = y + z.

Original entry on oeis.org

1, 3, 12, 20, 45, 63, 112, 144, 225, 275, 396, 468, 637, 735, 960, 1088, 1377, 1539, 1900, 2100, 2541, 2783, 3312, 3600, 4225, 4563, 5292, 5684, 6525, 6975, 7936, 8448, 9537, 10115, 11340, 11988, 13357, 14079, 15600, 16400, 18081, 18963, 20812, 21780, 23805
Offset: 0

Views

Author

Clark Kimberling, May 29 2012

Keywords

Comments

A signed version is A122576.
For a guide to related sequences, see A211795.
Partial sums of the positive elements of A129194. - Omar E. Pol, Dec 28 2013

Crossrefs

Programs

  • Haskell
    a212760 = a260706 . fromInteger . a001318 . (+ 1)
    -- Reinhard Zumkeller, Nov 17 2015
  • Magma
    [(n+1)*(n+2)*(2*n+3+(-1)^n)/8 : n in [0..50]]; // Wesley Ivan Hurt, Jul 22 2014
    
  • Maple
    A212760:=n->(n+1)*(n+2)*(2*n+3+(-1)^n)/8: seq(A212760(n), n=0..50); # Wesley Ivan Hurt, Jul 22 2014
  • Mathematica
    t = Compile[{{n, _Integer}}, Module[{s = 0}, (Do[If[(Mod[w, 2] == 0) && x == y + z, s++],
    {w, 0, n}, {x, 0, n}, {y, 0, n}, {z, 0, n}]; s)]];
    Map[t[#] &, Range[0, 50]]  (* A212760 *)
    Table[(n + 1) (n + 2) (2 n + 3 + (-1)^n)/8, {n, 0, 50}] (* Wesley Ivan Hurt, Jul 22 2014 *)
    CoefficientList[Series[(1 + 2 x + 6 x^2 + 2 x^3 + x^4)/((1 + x)^3 (1 - x)^4), {x, 0, 40}], x] (* Vincenzo Librandi, Jul 23 2014 *)

Formula

a(n) = a(n-1)+3*a(n-2)-3*a(n-3)-3*a(n-4)+3*a(n-5)+a(n-6)-a(n-7).
G.f.: ( 1+2*x+6*x^2+2*x^3+x^4 ) / ( (1+x)^3*(1-x)^4 ).
a(n) = (n+1)*(n+2)*(2*n+3+(-1)^n)/8. - Wesley Ivan Hurt, Jul 22 2014
a(n) = A260706(A001318(n+1)). - Reinhard Zumkeller, Nov 17 2015
a(n) = Sum_{i=1..n+1} numerator(i^2/2). - Wesley Ivan Hurt, Feb 26 2017