A212769 p*q modulo (p+q) with p, q consecutive primes.
1, 7, 11, 5, 23, 11, 35, 17, 43, 59, 59, 35, 83, 41, 91, 103, 119, 119, 65, 143, 143, 77, 163, 77, 95, 203, 101, 215, 107, 191, 125, 259, 275, 263, 299, 299, 311, 161, 331, 343, 359, 347, 383, 191, 395, 169, 181, 221, 455, 227, 463, 479, 467, 499, 511, 523
Offset: 1
Keywords
Links
- Zak Seidov, Table of n, a(n) for n = 1..1000
Programs
-
Maple
f:= proc(n) local p,q; p:= ithprime(n); q:= nextprime(p); (p*q) mod (p+q) end proc: map(f, [$1..100]); # Robert Israel, Jan 20 2022
-
Mathematica
Mod[Times@@#,Total[#]]&/@Partition[Prime[Range[60]],2,1] (* Harvey P. Dale, Feb 21 2022 *)
-
PARI
a(n) = (prime(n)*prime(n+1)) % (prime(n)+prime(n+1)); \\ Michel Marcus, Oct 19 2013
-
PARI
a(n)=my(p=prime(n),q=nextprime(p+1)); (p*q)%(p+q) \\ Charles R Greathouse IV, Oct 19 2013
Formula
From Robert Israel, Jan 20 2022: (Start)
If prime(n+1)-prime(n) = 4*k+2 with k^2 <= prime(n)/2, then a(n) = 2*prime(n)-4*k^2+1.
If prime(n+1)-prime(n) = 4*k with 4*k^2+2*k
Comments