A212798 Row 3 of array in A212796.
3, 294, 11664, 367500, 10609215, 292626432, 7839321861, 205683135000, 5312031978672, 135495143785470, 3421536337406913, 85686871818240000, 2130987634616000199, 52682956706683197258, 1295799745309605101520, 31730077997731715070000
Offset: 1
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..200
- Germain Kreweras, Complexite et circuits Euleriens dans les sommes tensorielles de graphes, J. Combin. Theory, B 24 (1978), 202-212. See p. 210, Parag. 4.
- Index to divisibility sequences
- Index entries for linear recurrences with constant coefficients, signature (58,-1131,8700,-29493,43734,-29493,8700,-1131,58,-1).
Programs
-
Maple
seq(simplify(n/3*(-2 + ( (5 + sqrt(21))/2 )^n + ( (5 - sqrt(21))/2 )^n)^2), n = 1..14); # Peter Bala, May 04 2014
-
Python
# Using graphillion from graphillion import GraphSet def make_CnXCk(n, k): grids = [] for i in range(1, k + 1): for j in range(1, n): grids.append((i + (j - 1) * k, i + j * k)) grids.append((i + (n - 1) * k, i)) for i in range(1, k * n, k): for j in range(1, k): grids.append((i + j - 1, i + j)) grids.append((i + k - 1, i)) return grids def A212798(n): if n == 1: return 3 if n == 2: return 294 universe = make_CnXCk(n, 3) GraphSet.set_universe(universe) spanning_trees = GraphSet.trees(is_spanning=True) return spanning_trees.len() print([A212798(n) for n in range(1, 30)]) # Seiichi Manyama, Nov 22 2020
Formula
From Peter Bala, May 04 2014: (Start)
a(n) = n/3*(-2 + ( (5 + sqrt(21))/2 )^n + ( (5 - sqrt(21))/2 )^n)^2 = 3*n*A054493(n-1)^2.
O.g.f.: 3*(x^8 + 40*x^7 - 665*x^6 - 866*x^5 + 5626*x^4 - 866*x^3 - 665*x^2 + 40*x + 1)/( (x - 1)^2*(x^2 - 5*x + 1)^2*(x^2 - 23*x + 1)^2 ). (End)
Extensions
More terms from Peter Bala, May 04 2014
Comments