cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A212798 Row 3 of array in A212796.

Original entry on oeis.org

3, 294, 11664, 367500, 10609215, 292626432, 7839321861, 205683135000, 5312031978672, 135495143785470, 3421536337406913, 85686871818240000, 2130987634616000199, 52682956706683197258, 1295799745309605101520, 31730077997731715070000
Offset: 1

Views

Author

N. J. A. Sloane, May 27 2012

Keywords

Comments

A linear divisibility sequence of order 10. - Peter Bala, May 04 2014

Crossrefs

Programs

  • Maple
    seq(simplify(n/3*(-2 + ( (5 + sqrt(21))/2 )^n + ( (5 - sqrt(21))/2 )^n)^2), n = 1..14); # Peter Bala, May 04 2014
  • Python
    # Using graphillion
    from graphillion import GraphSet
    def make_CnXCk(n, k):
        grids = []
        for i in range(1, k + 1):
            for j in range(1, n):
                grids.append((i + (j - 1) * k, i + j * k))
            grids.append((i + (n - 1) * k, i))
        for i in range(1, k * n, k):
            for j in range(1, k):
                grids.append((i + j - 1, i + j))
            grids.append((i + k - 1, i))
        return grids
    def A212798(n):
        if n == 1: return 3
        if n == 2: return 294
        universe = make_CnXCk(n, 3)
        GraphSet.set_universe(universe)
        spanning_trees = GraphSet.trees(is_spanning=True)
        return spanning_trees.len()
    print([A212798(n) for n in range(1, 30)])  # Seiichi Manyama, Nov 22 2020

Formula

From Peter Bala, May 04 2014: (Start)
a(n) = n/3*(-2 + ( (5 + sqrt(21))/2 )^n + ( (5 - sqrt(21))/2 )^n)^2 = 3*n*A054493(n-1)^2.
O.g.f.: 3*(x^8 + 40*x^7 - 665*x^6 - 866*x^5 + 5626*x^4 - 866*x^3 - 665*x^2 + 40*x + 1)/( (x - 1)^2*(x^2 - 5*x + 1)^2*(x^2 - 23*x + 1)^2 ). (End)

Extensions

More terms from Peter Bala, May 04 2014