cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A006240 Row 4 of array in A212801.

Original entry on oeis.org

1, 40, 793, 12800, 193721, 2886520, 42999713, 642355200, 9617422321, 144167168200, 2162192792233, 32433400563200, 486521516676521, 7298047169453080, 109472483776866353, 1642098503032012800, 24631532723767204321, 369473147671033293160, 5542096617629211606073, 83131435057615545920000
Offset: 1

Views

Author

Keywords

Comments

Number of Eulerian circuits in the Cartesian product of two directed cycles of lengths 4 and n. - Andrew Howroyd, Jan 14 2018

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A212801.

Programs

  • Mathematica
    T[m_, n_] := Product[2 - Exp[2*I*h*Pi/m] - Exp[2*I*k*Pi/n], {h, 1, m - 1}, {k, 1, n - 1}];
    a[n_] := T[4, n] // Round;
    Array[a, 20] (* Jean-François Alcover, Jul 04 2018 *)

Formula

Empirical g.f.: x*(1-167*x^2+1200*x^3-2505*x^4+3375*x^6)/((1-x)*(1-3*x)*(1-5*x)*(1-15*x)*(1-4*x+5*x^2)*(1-12*x+45*x^2)). - Bruno Berselli, May 31 2012
Empirical closed form: a(n) = (15^n+3^n-5^n-1+(2+i)^n+(2-i)^n -(6+3*i)^n -(6-3*i)^n)/4, where i=sqrt(-1). - Bruno Berselli, May 31 2012

Extensions

Revised by N. J. A. Sloane, May 27 2012

A006239 Row 3 of array in A212801.

Original entry on oeis.org

1, 13, 108, 793, 5611, 39312, 274933, 1923025, 13455396, 94169413, 659134543, 4613813568, 32296413241, 226074381637, 1582520088348, 11077641280225, 77543496352291, 542804506787088, 3799631657379853, 26597421924762793
Offset: 1

Views

Author

Keywords

Comments

Number of Eulerian circuits in the Cartesian product of two directed cycles of lengths 3 and n. - Andrew Howroyd, Jan 14 2018

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A212801.

Programs

  • Mathematica
    T[m_, n_] := Product[2 - Exp[2*I*h*Pi/m] - Exp[2*I*k*Pi/n], {h, 1, m - 1}, {k, 1, n - 1}];
    a[n_] := T[3, n] // Round;
    Array[a, 20] (* Jean-François Alcover, Jul 04 2018 *)

Formula

Empirical g.f.: x*(1-7*x^2)/((1-x)*(1-7*x)*(1-5*x+7*x^2)). - Bruno Berselli, May 31 2012
Empirical closed form: a(n) = (2^n*(1+7^n) -(5-i*sqrt(3))^n -(5+i*sqrt(3))^n) / (3*2^n), where i=sqrt(-1). - Bruno Berselli, May 31 2012

Extensions

Revised by N. J. A. Sloane, May 27 2012

A212802 Row 5 of array in A212801.

Original entry on oeis.org

1, 121, 5611, 193721, 6050000, 183990301, 5598183221, 171567260161, 5290933752571, 163756656800000, 5076226921767101, 157423577321804321, 4881873153941565211, 151371085451034210421, 4692977668021522550000, 145487069742178319930401
Offset: 1

Views

Author

N. J. A. Sloane, May 27 2012

Keywords

Comments

Number of Eulerian circuits in the Cartesian product of two directed cycles of lengths 5 and n. - Andrew Howroyd, Jan 12 2018

Crossrefs

Cf. A212801.

Programs

  • Mathematica
    T[m_, n_] := Product[2 - Exp[2*I*h*Pi/m] - Exp[2*I*k*Pi/n], {h, 1, m - 1}, {k, 1, n - 1}];
    a[n_] := T[5, n] // Round;
    Array[a, 20] (* Jean-François Alcover, Jul 04 2018 *)

Formula

From Andrew Howroyd, Jan 12 2018: (Start)
Empirical: a(n) = 121*a(n-1) - 6520*a(n-2) + 209330*a(n-3) - 4493120*a(n-4) + 68446433*a(n-5) - 766303183*a(n-6) + 6438802040*a(n-7) - 41070618160*a(n-8) + 199602863240*a(n-9) - 736417358863*a(n-10) + 2039087685503*a(n-11) - 4149490675520*a(n-12) + 5992940178830*a(n-13) - 5786524000120*a(n-14) + 3329026307431*a(n-15) - 852891037441*a(n-16) for n > 16.
Empirical g.f.: x*(1 - 31*x^2)*(1 - 2479*x^2 + 94380*x^3 - 1719180*x^4 + 18597458*x^5 - 128373600*x^6 + 576521198*x^7 - 1652131980*x^8 + 2811674580*x^9 - 2289408559*x^10 + 887503681*x^12)/((1 - x)*(1 - 31*x)*(1 - 12*x + 31*x^2)*(1 - 9*x + 31*x^2 - 49*x^3 + 31*x^4)*(1 - 19*x + 151*x^2 - 589*x^3 + 961*x^4)*(1 - 49*x + 961*x^2 - 8649*x^3 + 29791*x^4)).
(End)

A298119 Array read by antidiagonals: T(m,n) = number of Eulerian orientations of the torus grid graph C_m X C_n.

Original entry on oeis.org

4, 8, 8, 16, 18, 16, 32, 44, 44, 32, 64, 114, 148, 114, 64, 128, 308, 548, 548, 308, 128, 256, 858, 2116, 2970, 2116, 858, 256, 512, 2444, 8324, 16892, 16892, 8324, 2444, 512, 1024, 7074, 33028, 98466, 143224, 98466, 33028, 7074
Offset: 1

Views

Author

Andrew Howroyd, Jan 12 2018

Keywords

Comments

In other words, the number of orientations of the m X n torus grid graph in which each vertex has equal indegree and outdegree.
Values are always even since reversing the orientation of each edge will always result in another Eulerian orientation.

Examples

			Array begins:
============================================================
m\n|   1    2     3      4        5         6          7
---|--------------------------------------------------------
1  |   4    8    16     32       64       128        256 ...
2  |   8   18    44    114      308       858       2444 ...
3  |  16   44   148    548     2116      8324      33028 ...
4  |  32  114   548   2970    16892     98466     583412 ...
5  |  64  308  2116  16892   143224   1250228   11091536 ...
6  | 128  858  8324  98466  1250228  16448400  220603364 ...
7  | 256 2444 33028 583412 11091536 220603364 4484823396 ...
...
		

Crossrefs

Main diagonal is A054759.
Rows 2..5 are 2*A099754, 2*A170938, A298201, A372093, A372094.

A298117 Array read by antidiagonals: T(m,n) = number of Eulerian cycles in the torus grid graph C_m X C_n.

Original entry on oeis.org

2, 4, 4, 8, 40, 8, 16, 320, 320, 16, 32, 2368, 8616, 2368, 32, 64, 16832, 207496, 207496, 16832, 64, 128, 116608, 4788808, 15639936, 4788808, 116608, 128, 256, 793088, 108326760, 1116199200, 1116199200, 108326760, 793088, 256
Offset: 1

Views

Author

Andrew Howroyd, Jan 12 2018

Keywords

Examples

			Array begins:
=========================================================================
m\n|  1      2         3           4              5                 6
---|---------------------------------------------------------------------
1  |  2      4         8          16             32                64 ...
2  |  4     40       320        2368          16832            116608 ...
3  |  8    320      8616      207496        4788808         108326760 ...
4  | 16   2368    207496    15639936     1116199200       77643032832 ...
5  | 32  16832   4788808  1116199200   242230440480    50917973008584 ...
6  | 64 116608 108326760 77643032832 50917973008584 32098460087825856 ...
...
		

Crossrefs

Rows 2..4 are A298198, A282621, A298197.
Main diagonal is A297385.

A212803 Number of Eulerian circuits in the Cartesian product of two directed cycles of lengths n.

Original entry on oeis.org

1, 4, 108, 12800, 6050000, 11218701312, 81959473720768, 2376692369090150400, 275204089028043534645504, 127722545775271195902771200000, 238045190395699755964859156456705024, 1783083199654005767436422099232872202240000, 53684915729010675246823790713834564866472376291328
Offset: 1

Views

Author

N. J. A. Sloane, May 27 2012

Keywords

Crossrefs

Main diagonal of A212801.

Programs

  • Mathematica
    a[n_] := Product[2-E^(2 h Pi I/n)-E^(2 k Pi I/n), {h, 1, n-1}, {k, 1, n-1}];
    Array[a, 12] // Round (* Jean-François Alcover, Sep 02 2019 *)

Extensions

Name clarified by Andrew Howroyd, Jan 12 2018
Terms a(13) and beyond from Andrew Howroyd, May 19 2020
Showing 1-6 of 6 results.