cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A298119 Array read by antidiagonals: T(m,n) = number of Eulerian orientations of the torus grid graph C_m X C_n.

Original entry on oeis.org

4, 8, 8, 16, 18, 16, 32, 44, 44, 32, 64, 114, 148, 114, 64, 128, 308, 548, 548, 308, 128, 256, 858, 2116, 2970, 2116, 858, 256, 512, 2444, 8324, 16892, 16892, 8324, 2444, 512, 1024, 7074, 33028, 98466, 143224, 98466, 33028, 7074
Offset: 1

Views

Author

Andrew Howroyd, Jan 12 2018

Keywords

Comments

In other words, the number of orientations of the m X n torus grid graph in which each vertex has equal indegree and outdegree.
Values are always even since reversing the orientation of each edge will always result in another Eulerian orientation.

Examples

			Array begins:
============================================================
m\n|   1    2     3      4        5         6          7
---|--------------------------------------------------------
1  |   4    8    16     32       64       128        256 ...
2  |   8   18    44    114      308       858       2444 ...
3  |  16   44   148    548     2116      8324      33028 ...
4  |  32  114   548   2970    16892     98466     583412 ...
5  |  64  308  2116  16892   143224   1250228   11091536 ...
6  | 128  858  8324  98466  1250228  16448400  220603364 ...
7  | 256 2444 33028 583412 11091536 220603364 4484823396 ...
...
		

Crossrefs

Main diagonal is A054759.
Rows 2..5 are 2*A099754, 2*A170938, A298201, A372093, A372094.

A212801 Square array read by antidiagonals: T(m,n) = number of Eulerian circuits in the Cartesian product of two directed cycles of lengths m and n.

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 1, 13, 13, 1, 1, 40, 108, 40, 1, 1, 121, 793, 793, 121, 1, 1, 364, 5611, 12800, 5611, 364, 1, 1, 1093, 39312, 193721, 193721, 39312, 1093, 1, 1, 3280, 274933, 2886520, 6050000, 2886520, 274933, 3280, 1, 1, 9841, 1923025, 42999713, 183990301, 183990301, 42999713, 1923025, 9841, 1
Offset: 1

Views

Author

N. J. A. Sloane, May 27 2012

Keywords

Comments

All rows and columns are given by linear recurrences with constant coefficients. Empirically, the order of the recurrences for n=1..8 appear to be 1, 2, 4, 8, 16, 24, 64, 128. - Andrew Howroyd, May 19 2020

Examples

			Array begins:
======================================================================
m\n| 1    2      3        4          5            6              7
---|------------------------------------------------------------------
1  | 1    1      1        1          1            1              1 ...
2  | 1    4     13       40        121          364           1093 ...
3  | 1   13    108      793       5611        39312         274933 ...
4  | 1   40    793    12800     193721      2886520       42999713 ...
5  | 1  121   5611   193721    6050000    183990301     5598183221 ...
6  | 1  364  39312  2886520  183990301  11218701312   681838513861 ...
7  | 1 1093 274933 42999713 5598183221 681838513861 81959473720768 ...
...
		

Crossrefs

Main diagonal is A212803.

Programs

  • Mathematica
    T[m_, n_] := Product[2 - Exp[2*I*h*Pi/m] - Exp[2*I*k*Pi/n], {h, 1, m - 1}, {k, 1, n - 1}];
    Table[T[m - n + 1, n] // FullSimplify, {m, 1, 10}, {n, 1, m}] // Flatten (* Jean-François Alcover, Jun 30 2018 *)
  • PARI
    T(m,n) = prod(k=1, n-1, prod(h=1, m-1, 2 - exp(2*I*h*Pi/m) - exp(2*I*k*Pi/n)));
    tabl(nn) = matrix(nn, nn, m, n, round(real(T(m,n)))); \\ Michel Marcus, Feb 01 2016
    
  • PARI
    \\ all integer version.
    R(n,f)={my(p=lift(prod(i=1, n-1, f(Mod(x^i, 1-x^n))))); sumdiv(n, d, moebius(n/d) * polcoef(p, d%n, x))}
    T(m,n)={my(p=R(n, x->2-x-y)); R(m, x->subst(p, y, x))} \\ Andrew Howroyd, May 19 2020

Formula

T(m,n) = Product_{k=1..n-1} Product_{h=1..m-1} (2 - exp(2*i*h*Pi/m) - exp(2*i*k*Pi/n)), where i is the imaginary unit.

Extensions

Name clarified by Andrew Howroyd, Jan 12 2018

A298197 Number of Eulerian cycles in the graph C_4 X C_n.

Original entry on oeis.org

16, 2368, 207496, 15639936, 1116199200, 77643032832, 5318859987584, 360460090519552, 24225364155392512, 1617040095771160576, 107318756823774554112, 7087408485751290626048, 466051677657117523779584, 30530955397986792883159040, 1993388935416599069605396480
Offset: 1

Views

Author

Andrew Howroyd, Jan 14 2018

Keywords

Comments

a(n) is divisible by 2^n.

Crossrefs

Row 4 of A298117.

Programs

  • Mathematica
    Table[1/4 (-4 (12 - 4 Sqrt[5])^n - 4 (12 + 4 Sqrt[5])^n + 2^n (-3 + 3 2^(1 + n) + 3^n + 5^n - 15^n) + 2 (33 - 5 Sqrt[33])^n + 2 (33 + 5 Sqrt[33])^n) + 1/330 (-11 2^n (6 5^n + 5 6^n) + 50 (33 - 5 Sqrt[33])^n + 50 (33 + 5 Sqrt[33])^n) n, {n, 20}] // Expand (* Eric W. Weisstein, Jan 15 2018 *)
    LinearRecurrence[{242, -24508, 1377576, -48319952, 1127281504, -18164303168, 206564578176, -1673816120832, 9654475382784, -39144748253184, 108479226544128, -194648732467200, 202715666841600, -92493840384000}, {16, 2368, 207496, 15639936, 1116199200, 77643032832, 5318859987584, 360460090519552, 24225364155392512, 1617040095771160576, 107318756823774554112, 7087408485751290626048, 466051677657117523779584, 30530955397986792883159040}, 20] (* Eric W. Weisstein, Jan 15 2018 *)
    CoefficientList[Series[8 (2 - 188 x + 3321 x^2 + 177454 x^3 - 9041760 x^4 + 171251312 x^5 - 1590178736 x^6 + 5597941472 x^7 + 25225706112 x^8 - 343839085056 x^9 + 1466120669184 x^10 - 2913427243008 x^11 + 2262128394240 x^12)/((1 - 2 x) (1 - 4 x) (1 - 6 x) (1 - 10 x)^2 (1 - 12 x)^2 (1 - 30 x) (1 - 24 x + 64 x^2) (1 - 66 x + 264 x^2)^2), {x, 0, 20}], x] (* Eric W. Weisstein, Jan 15 2018 *)

Formula

G.f.: 8*x*(2 - 188*x + 3321*x^2 + 177454*x^3 - 9041760*x^4 + 171251312*x^5 - 1590178736*x^6 + 5597941472*x^7 + 25225706112*x^8 - 343839085056*x^9 + 1466120669184*x^10 - 2913427243008*x^11 + 2262128394240*x^12)/((1 - 2*x)*(1 - 4*x)*(1 - 6*x)*(1 - 10*x)^2*(1 - 12*x)^2*(1 - 30*x)*(1 - 24*x + 64*x^2)*(1 - 66*x + 264*x^2)^2).
a(n) = 242*a(n-1) - 24508*a(n-2) + 1377576*a(n-3) - 48319952*a(n-4) + 1127281504*a(n-5) - 18164303168*a(n-6) + 206564578176*a(n-7) - 1673816120832*a(n-8) + 9654475382784*a(n-9) - 39144748253184*a(n-10) + 108479226544128*a(n-11) - 194648732467200*a(n-12) + 202715666841600*a(n-13) - 92493840384000*a(n-14). - Eric W. Weisstein, Jan 15 2018

A282621 Number of Eulerian cycles in the graph C_3 X C_n.

Original entry on oeis.org

8, 320, 8616, 207496, 4788808, 108326760, 2423906696, 53891103656, 1193490502728, 26367062410600, 581618469479176, 12817206071979816, 282280911579925448, 6214413253138283240, 136776355872474130056, 3009909527048881143976, 66229625352973066928968
Offset: 1

Views

Author

Andrew Howroyd, Jan 14 2018

Keywords

Crossrefs

Row 3 of A298117.

Programs

  • Mathematica
    Table[22^n + 1/3 (2^n + 3 2^(1 + 2 n) - 8 5^n - 2^(1 + n) 7^n), {n, 20}] (* Eric W. Weisstein, Jan 15 2018 *)
    LinearRecurrence[{47, -742, 4796, -13144, 12320}, {8, 320, 8616, 207496, 4788808}, 20] (* Eric W. Weisstein, Jan 15 2018 *)
    CoefficientList[Series[8 (1 - 7 x - 61 x^2 + 202 x^3)/((1 - 2 x) (1 - 4 x) (1 - 5 x) (1 - 14 x) (1 - 22 x)), {x, 0, 20}], x] (* Eric W. Weisstein, Jan 15 2018 *)
  • PARI
    Vec(8*(1 - 7*x - 61*x^2 + 202*x^3)/((1 - 2*x)*(1 - 4*x)*(1 - 5*x)*(1 - 14*x)*(1 - 22*x)) + O(x^20))

Formula

a(n) = 47*a(n-1) - 742*a(n-2) + 4796*a(n-3) - 13144*a(n-4) + 12320*a(n-5) for n > 5.
G.f.: 8*x*(1 - 7*x - 61*x^2 + 202*x^3)/((1 - 2*x)*(1 - 4*x)*(1 - 5*x)*(1 - 14*x)*(1 - 22*x)).
a(n) = 22^n + (2^n + 3*2^(1 + 2*n) - 8*5^n - 2^(1 + n)*7^n)/3. - Eric W. Weisstein, Jan 15 2018

A297385 Number of Eulerian cycles in the n X n torus grid graph.

Original entry on oeis.org

2, 40, 8616, 15639936, 242230440480, 32098460087825856, 36433115190009846104160
Offset: 1

Views

Author

Eric W. Weisstein, Dec 29 2017

Keywords

Comments

a(3) is also the number of Eulerian cycles in the 3 X 3 rook graph.
a(4) is also the number of Eulerian cycles in the 4-hypercube (tesseract) graph Q_4.

Crossrefs

Main diagonal of A298117.

Extensions

a(4)-a(7) from Andrew Howroyd, Jan 12 2018
a(1)-a(2) from Andrew Howroyd, Jan 12 2018

A298198 Number of Eulerian cycles in the graph Cartesian product of C_n and a double edge.

Original entry on oeis.org

4, 40, 320, 2368, 16832, 116608, 793088, 5318656, 35271680, 231786496, 1511653376, 9795518464, 63126683648, 404881506304, 2586017398784, 16456474427392, 104381066510336, 660139718213632, 4163958223142912, 26202468819927040, 164527129801785344
Offset: 1

Views

Author

Andrew Howroyd, Jan 14 2018

Keywords

Comments

When n = 2 the graph is the Cartesian product of two double edges.
a(n) is divisible by 2^(n + 1).

Crossrefs

Row 2 of A298117.

Programs

  • PARI
    Vec(4*(1 - 4*x)/((1 - 2*x)*(1 - 6*x)^2) + O(x^30))

Formula

a(n) = 14*a(n-1) - 60*a(n-2) + 72*a(n-3) for n > 3.
G.f.: 4*x*(1 - 4*x)/((1 - 2*x)*(1 - 6*x)^2).
Showing 1-6 of 6 results.