cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A212861 Numbers n such that the sum of prime factors of n (counted with repetition) equals three times the largest prime divisor.

Original entry on oeis.org

8, 24, 27, 125, 150, 160, 180, 343, 490, 588, 700, 840, 896, 945, 1008, 1134, 1331, 2197, 3388, 3718, 4840, 4913, 5445, 5808, 6292, 6534, 6859, 8085, 8624, 9464, 9625, 9702, 10647, 11550, 12167, 12274, 12320, 12675, 13520, 13750, 13860, 14784, 15015, 15028
Offset: 1

Views

Author

Michel Lagneau, May 29 2012

Keywords

Comments

The numbers prime(n)^3 are in the sequence.

Examples

			150 is in the sequence because 150 = 2*3*5^2 => sum of prime divisors = 2+3 + 5*2 = 15 = 3*5 where 5 is the greatest prime divisor.
		

Crossrefs

Programs

  • Maple
    with(numtheory):A:= proc(n) local e, j; e := ifactors(n)[2]: add (e[j][1]*e[j][2], j=1..nops(e)) end: for m from 2 to 20000 do: x:=factorset(m):n1:=nops(x):if A(m)=3*x[n1] then printf(`%d, `,m):else fi:od:
  • Mathematica
    spfQ[n_]:=Module[{f=FactorInteger[n]},Total[Flatten[Table[#[[1]], #[[2]]]&/@ f]]==3*f[[-1,1]]]; Select[Range[16000],spfQ] (* Harvey P. Dale, Jul 26 2016 *)
  • PARI
    is(n)=my(f=factor(n),k=#f[,1]); k && sum(i=1,k,f[i,1]*f[i,2]) == 3*f[k,1] \\ Charles R Greathouse IV, May 29 2012

Formula

sopfr(n) = 3*gpf(n), where gpf = A006530. - Charles R Greathouse IV, May 29 2012