A212918 Numbers whose sum of prime factors (counted with multiplicity) is a pentagonal number (A000326).
1, 5, 6, 35, 42, 50, 57, 60, 64, 72, 81, 85, 102, 121, 124, 182, 188, 201, 232, 260, 261, 267, 308, 312, 351, 440, 452, 495, 519, 528, 594, 645, 649, 688, 735, 741, 774, 784, 805, 854, 861, 875, 882, 901, 966, 1025, 1027, 1045, 1050, 1081, 1105, 1112, 1119
Offset: 1
Examples
a(3) = 35 because sopfr(35) = sum of prime factors of 35 = 5 + 7 = 12, and 12 is the 3rd pentagonal number.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..5000
Programs
-
Mathematica
pentagonalQ[n_] := IntegerQ[(1 + Sqrt[1 + 24*n])/6]; pfs[n_] := Module[{p, e}, {p, e} = Transpose[FactorInteger[n]]; Dot[p, e]]; Select[Range[1500], pentagonalQ[pfs[#]] &] (* T. D. Noe, May 31 2012 *)
-
PARI
sopfr(n) = my(f=factor(n)); sum(k=1, matsize(f)[1], f[k, 1]*f[k, 2]); \\ A001414 isok(n) = ispolygonal(sopfr(n), 5); \\ Michel Marcus, May 02 2018
Extensions
Corrected by T. D. Noe, May 31 2012
Comments