A213025 Balanced semiprimes (of order one): semiprimes which are the average of the previous semiprime and the following semiprime.
34, 86, 94, 122, 142, 185, 194, 202, 214, 218, 262, 289, 302, 314, 321, 358, 371, 394, 407, 413, 415, 422, 446, 471, 489, 493, 497, 517, 535, 562, 581, 586, 626, 634, 669, 687, 698, 734, 785, 791, 815, 838, 842, 922, 982, 989, 1042, 1057, 1079, 1135, 1138
Offset: 1
Keywords
Examples
194 is in the sequence because 194 = (187 + 194 + 201)/3 = (A001358(61) + A001358(62) + A001358(63))/3.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..10000
- Eric Weisstein's World of Mathematics, Semiprime
Programs
-
Haskell
a213025 n = a213025_list !! (n-1) a213025_list = f a001358_list where f (x:sps'@(y:z:sps)) | 2 * y == (x + z) = y : f sps' | otherwise = f sps' -- Reinhard Zumkeller, Jun 10 2012
-
Maple
with(numtheory): prevsp:= proc(n) local k; for k from n-1 by -1 while isprime(k) or bigomega(k)<>2 do od; k end: nextsp:= proc(n) local k; for k from n+1 while isprime(k) or bigomega(k)<>2 do od; k end: a:= proc(n) option remember; local s; s:= `if`(n=1, 4, a(n-1)); do s:= nextsp(s); if s=(prevsp(s)+nextsp(s))/2 then break fi od; s end: seq (a(n), n=1..100); # Alois P. Heinz, Jun 03 2012
-
Mathematica
bspQ[{a_,b_,c_}]:=b==(a+c)/2; With[{sp=Select[Range[1200],PrimeOmega[#] == 2&]}, Transpose[Select[Partition[sp,3,1],bspQ]][[2]]] (* Harvey P. Dale, Nov 18 2012 *) Select[Partition[Select[Range[1200],PrimeOmega[#]==2&],3,1],Mean[#]==#[[2]]&][[;;,2]] (* Harvey P. Dale, Jul 31 2025 *)
Formula
2*sp_(n) = sp_(n - 1) + sp_(n + 1).
a(n) = (1/3) * (sp(i) + sp(i + 1) + sp(i + 2)), for some i(n).
Comments