A213052 Increasing sequence of primes p such that all of 2,3,5,...,prime(n) are primitive roots mod p.
3, 5, 53, 173, 293, 2477, 9173, 22613, 27653, 61613, 74093, 92333, 170957, 360293, 679733, 847997, 2004917, 69009533, 76553573, 138473837, 237536213, 777133013, 883597853, 1728061733, 2050312613, 5534091197, 9447241877, 49107823133, 65315700413
Offset: 1
Links
- Dana Jacobsen, Table of n, a(n) for n = 1..31
Programs
-
PARI
N=10^10; default(primelimit,N); A=2; { forprime (p=3, N, q = 1; forprime (a=2, A, if ( znorder(Mod(a,p)) != p-1, q=0; break() ); ); if ( q, A=nextprime(A+1); print1(p,", ") ); );}
-
Perl
use Math::Prime::Util ":all"; my($N,$A,$p,$a,@P7) = (10**11,2); forprimes { $p=$_; if ( is_primitive_root(2,$p) && ($A < 3 || is_primitive_root(3,$p)) && ($A < 5 || is_primitive_root(5,$p)) && ($A < 7 || vecall { is_primitive_root($_,$p) } @P7) ) { print "$p\n"; $A = next_prime($A); push @P7, $A if $A >= 7; } } 3,$N; # Dana Jacobsen, Jul 11 2018
Extensions
a(20)-a(27) from Joerg Arndt, Apr 10 2016
a(28)-a(29) from Dana Jacobsen, Jul 11 2018
Comments