cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A213074 Irregular triangle read by rows: coefficients c(n,k) (n>=2, 0<=k<= floor((n-2)/2)) in formula for number of restricted partitions.

Original entry on oeis.org

1, 1, 1, 2, 1, 3, 1, 7, 8, 1, 10, 14, 1, 17, 50, 36, 1, 24, 89, 78, 1, 36, 207, 368, 200, 1, 49, 340, 701, 431, 1, 70, 685, 2190, 2756, 1188, 1, 93, 1075, 3935, 5564, 2658
Offset: 2

Views

Author

N. J. A. Sloane, Jun 04 2012

Keywords

Comments

Let T^(n)_m denote the number of partitions of mn that can be obtained by adding together m (not necessarily distinct) partitions of n (see A213086). For T^(n)_2, T^(n)_3, T^(n)_4, T^(n)_5 see A002219 through A002222.
Metropolis and Stein show that T^(n)_m is given by the formula
T^(n)m = Sum{k=0..n-g-1} binomial(m+g,g+k) c(n,k), where g = floor((n+1)/2).

Examples

			Triangle c(n,k) begins:
n\k
-  0    1    2    3    4    5 ...
---------------------------------
2  1
3  1
4  1    2
5  1    3
6  1    7    8
7  1   10   14
8  1   17   50   36
9  1   24   89   78
10 1   36  207  368  200
11 1   49  340  701  431
12 1   70  685 2190 2756 1188
13 1   93 1075 3935 5564 2658
...
		

Crossrefs

Programs

  • Maple
    with(combinat):
    h:= proc(n, m) option remember;
          `if`(m>1, map(x-> map(y-> sort([x[], y[]]), h(n, 1))[],
           h(n, m-1)), `if`(m=1, map(x->map(y-> `if`(y>1, y-1, NULL), x),
           {partition(n)[]}), {[]}))
        end:
    T:= proc(n) local i, g, t;
          g:= floor((n+1)/2);
          subs(solve({seq(nops(h(n, t))=add(c||i *binomial(t+g, g+i),
          i=0..n-g-1), t=1..n-g)}, {seq(c||i, i=0..n-g-1)}),
          [seq(c||i, i=0..n-g-1)])[]
        end:
    seq(T(n), n=2..10);  # Alois P. Heinz, Jul 11 2012
  • Mathematica
    nmax = 13; mmax = 5;
    T[n_, m_] := T[n, m] = Module[{ip, lg, i}, ip = IntegerPartitions[n]; lg = Length[ip]; i[0] = 1; Table[ Join[ Sequence @@ Table[ip[[i[k]]], {k, 1, m}]] // Sort, Evaluate[Sequence @@ Table[{i[k], i[k - 1], lg}, {k, 1, m}]]] // Flatten[#, m - 1] & // Union // Length]; T[_, 0] = 1;
    U[n_, m_] := With[{g = Floor[(n + 1)/2]}, If[n == 1, 1, Sum[Binomial[m + g, g + k] c[n, k], {k, 0, n - g - 1}]]];
    Do[TT = Table[T[n , m] - U[n , m], {n, 1, nmax}, {m, 0, mm}] // Flatten; c[_, 0] = 1; sol = Solve[Thread[TT == 0]][[1]]; cc = Table[c[n, k], {n, 2, nmax}, {k, 0, Floor[(n - 2)/2]}] /. sol // Flatten; Print[cc], {mm, 2, mmax}];
    cc (* Jean-François Alcover, May 25 2016 *)

Extensions

12 more terms (rows 12-13) from Alois P. Heinz, Jul 11 2012