A213074 Irregular triangle read by rows: coefficients c(n,k) (n>=2, 0<=k<= floor((n-2)/2)) in formula for number of restricted partitions.
1, 1, 1, 2, 1, 3, 1, 7, 8, 1, 10, 14, 1, 17, 50, 36, 1, 24, 89, 78, 1, 36, 207, 368, 200, 1, 49, 340, 701, 431, 1, 70, 685, 2190, 2756, 1188, 1, 93, 1075, 3935, 5564, 2658
Offset: 2
Examples
Triangle c(n,k) begins: n\k - 0 1 2 3 4 5 ... --------------------------------- 2 1 3 1 4 1 2 5 1 3 6 1 7 8 7 1 10 14 8 1 17 50 36 9 1 24 89 78 10 1 36 207 368 200 11 1 49 340 701 431 12 1 70 685 2190 2756 1188 13 1 93 1075 3935 5564 2658 ...
Links
- N. Metropolis and P. R. Stein, An elementary solution to a problem in restricted partitions, J. Combin. Theory, 9 (1970), 365-376.
Programs
-
Maple
with(combinat): h:= proc(n, m) option remember; `if`(m>1, map(x-> map(y-> sort([x[], y[]]), h(n, 1))[], h(n, m-1)), `if`(m=1, map(x->map(y-> `if`(y>1, y-1, NULL), x), {partition(n)[]}), {[]})) end: T:= proc(n) local i, g, t; g:= floor((n+1)/2); subs(solve({seq(nops(h(n, t))=add(c||i *binomial(t+g, g+i), i=0..n-g-1), t=1..n-g)}, {seq(c||i, i=0..n-g-1)}), [seq(c||i, i=0..n-g-1)])[] end: seq(T(n), n=2..10); # Alois P. Heinz, Jul 11 2012
-
Mathematica
nmax = 13; mmax = 5; T[n_, m_] := T[n, m] = Module[{ip, lg, i}, ip = IntegerPartitions[n]; lg = Length[ip]; i[0] = 1; Table[ Join[ Sequence @@ Table[ip[[i[k]]], {k, 1, m}]] // Sort, Evaluate[Sequence @@ Table[{i[k], i[k - 1], lg}, {k, 1, m}]]] // Flatten[#, m - 1] & // Union // Length]; T[_, 0] = 1; U[n_, m_] := With[{g = Floor[(n + 1)/2]}, If[n == 1, 1, Sum[Binomial[m + g, g + k] c[n, k], {k, 0, n - g - 1}]]]; Do[TT = Table[T[n , m] - U[n , m], {n, 1, nmax}, {m, 0, mm}] // Flatten; c[_, 0] = 1; sol = Solve[Thread[TT == 0]][[1]]; cc = Table[c[n, k], {n, 2, nmax}, {k, 0, Floor[(n - 2)/2]}] /. sol // Flatten; Print[cc], {mm, 2, mmax}]; cc (* Jean-François Alcover, May 25 2016 *)
Extensions
12 more terms (rows 12-13) from Alois P. Heinz, Jul 11 2012
Comments