cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A213075 Second diagonal of A213074.

Original entry on oeis.org

2, 3, 7, 10, 17, 24, 36, 49, 70, 93
Offset: 4

Views

Author

N. J. A. Sloane, Jun 04 2012

Keywords

Crossrefs

Cf. A213074.

Extensions

a(12)-a(13) from Alois P. Heinz, Jul 11 2012

A213076 Right-hand diagonal of A213074.

Original entry on oeis.org

1, 2, 8, 36, 200, 1188
Offset: 2

Views

Author

N. J. A. Sloane, Jun 04 2012

Keywords

Crossrefs

Cf. A213074.

Extensions

a(7) from Alois P. Heinz, Jul 11 2012

A002219 a(n) is the number of partitions of 2n that can be obtained by adding together two (not necessarily distinct) partitions of n.

Original entry on oeis.org

1, 3, 6, 14, 25, 53, 89, 167, 278, 480, 760, 1273, 1948, 3089, 4682, 7177, 10565, 15869, 22911, 33601, 47942, 68756, 96570, 136883, 189674, 264297, 362995, 499617, 678245, 924522, 1243098, 1676339, 2237625, 2988351, 3957525, 5247500, 6895946, 9070144, 11850304
Offset: 1

Views

Author

Keywords

Examples

			Here are the seven partitions of 5: 1^5, 1^3 2, 1 2^2, 1^2 3, 2 3, 1 4, 5. Adding these together in pairs we get a(5) = 25 partitions of 10: 1^10, 1^8 2, 1^6 2^2, etc. (we get all partitions of 10 into parts of size <= 5 - there are 30 such partitions - except for five of them: we do not get 2 4^2, 3^2 4, 2^3 4, 1 3^3, 2^5). - _N. J. A. Sloane_, Jun 03 2012
From _Gus Wiseman_, Oct 27 2022: (Start)
The a(1) = 1 through a(4) = 14 partitions:
  (11)  (22)    (33)      (44)
        (211)   (321)     (422)
        (1111)  (2211)    (431)
                (3111)    (2222)
                (21111)   (3221)
                (111111)  (3311)
                          (4211)
                          (22211)
                          (32111)
                          (41111)
                          (221111)
                          (311111)
                          (2111111)
                          (11111111)
(End)
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column m=2 of A213086.
Bisection of A276107.
The strict version is A237258, ranked by A357854.
Ranked by A357976 = positions of nonzero terms in A357879.
A122768 counts distinct submultisets of partitions.
A304792 counts subset-sums of partitions, positive A276024, strict A284640.

Programs

  • Maple
    g:= proc(n, i) option remember;
         `if`(n=0, 1, `if`(i>1, g(n, i-1), 0)+`if`(i>n, 0, g(n-i, i)))
        end:
    b:= proc(n, i, s) option remember;
         `if`(i=1 and s<>{} or n in s, g(n, i), `if`(i<1 or s={}, 0,
          b(n, i-1, s)+ `if`(i>n, 0, b(n-i, i, map(x-> {`if`(x>n-i, NULL,
          max(x, n-i-x)), `if`(xn, NULL, max(x-i, n-x))}[], s)))))
        end:
    a:= n-> b(2*n, n, {n}):
    seq(a(n), n=1..25);  # Alois P. Heinz, Jul 10 2012
  • Mathematica
    b[n_, i_, s_] := b[n, i, s] = If[MemberQ[s, 0 | n], 0, If[n == 0, 1, If[i < 1, 0, b[n, i-1, s] + If[i <= n, b[n-i, i, Select[Flatten[Transpose[{s, s-i}]], 0 <= # <= n-i &]], 0]]]]; A006827[n_] := b[2*n, 2*n, {n}]; a[n_] := PartitionsP[2*n] - A006827[n]; Table[Print[an = a[n]]; an, {n, 1, 25}] (* Jean-François Alcover, Nov 12 2013, after Alois P. Heinz *)
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    subptns[s_]:=primeMS/@Divisors[Times@@Prime/@s];
    Table[Length[Select[IntegerPartitions[2n],MemberQ[Total/@subptns[#],n]&]],{n,10}] (* Gus Wiseman, Oct 27 2022 *)
  • Python
    from itertools import combinations_with_replacement
    from sympy.utilities.iterables import partitions
    def A002219(n): return len({tuple(sorted((p+q).items())) for p, q in combinations_with_replacement(tuple(Counter(p) for p in partitions(n)),2)}) # Chai Wah Wu, Sep 20 2023

Formula

See A213074 for Metropolis and Stein's formulas.
a(n) = A000041(2*n) - A006827(n) = A000041(2*n) - A046663(2*n,n).
a(n) = A276107(2*n). - Max Alekseyev, Oct 17 2022

Extensions

Better description from Vladeta Jovovic, Mar 06 2000
More terms from Christian G. Bower, Oct 12 2001
Edited by N. J. A. Sloane, Jun 03 2012
More terms from Alois P. Heinz, Jul 10 2012

A367094 Irregular triangle read by rows with trailing zeros removed where T(n,k) is the number of integer partitions of 2n whose number of submultisets summing to n is k.

Original entry on oeis.org

0, 1, 1, 1, 2, 2, 1, 5, 3, 3, 8, 4, 9, 1, 17, 6, 16, 1, 2, 24, 7, 33, 4, 9, 46, 11, 52, 3, 18, 1, 4, 64, 12, 91, 6, 38, 3, 15, 1, 1, 107, 17, 138, 9, 68, 2, 28, 2, 12, 0, 2, 147, 19, 219, 12, 117, 6, 56, 3, 34, 2, 9, 0, 3
Offset: 0

Author

Gus Wiseman, Nov 07 2023

Keywords

Examples

			The partition (3,2,2,1) has two submultisets summing to 4, namely {2,2} and {1,3}, so it is counted under T(4,2).
The partition (2,2,1,1,1,1) has three submultisets summing to 4, namely {1,1,1,1}, {1,1,2}, and {2,2}, so it is counted under T(4,3).
Triangle begins:
    0   1
    1   1
    2   2   1
    5   3   3
    8   4   9   1
   17   6  16   1   2
   24   7  33   4   9
   46  11  52   3  18   1   4
   64  12  91   6  38   3  15   1   1
  107  17 138   9  68   2  28   2  12   0   2
  147  19 219  12 117   6  56   3  34   2   9   0   3
Row n = 4 counts the following partitions:
  (8)     (44)        (431)      (221111)
  (71)    (3311)      (422)
  (62)    (2222)      (4211)
  (611)   (11111111)  (41111)
  (53)                (3221)
  (521)               (32111)
  (5111)              (311111)
  (332)               (22211)
                      (2111111)
		

Crossrefs

Row sums w/o the first column are A002219, ranks A357976, strict A237258.
Column k = 0 is A006827.
Row sums are A058696.
Column k = 1 is A108917.
The corresponding rank statistic is A357879 (without empty rows).
A000041 counts integer partitions, strict A000009.
A182616 counts partitions of 2n that do not contain n, ranks A366321.
A182616 counts partitions of 2n with at least one odd part, ranks A366530.
A276024 counts positive subset-sums of partitions, strict A284640.
A304792 counts subset-sums of partitions, rank statistic A299701.
A365543 counts partitions of n with a submultiset summing to k.

Programs

  • Mathematica
    t=Table[Length[Select[IntegerPartitions[2n], Count[Total/@Union[Subsets[#]],n]==k&]], {n,0,5}, {k,0,1+PartitionsP[n]}];
    Table[NestWhile[Most,t[[i]],Last[#]==0&], {i,Length[t]}]

Formula

T(n,1) = A108917(n).

A357879 Number of divisors of n with the same sum of prime indices as their quotient. Central column of A321144, taking gaps as 0's.

Original entry on oeis.org

1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 1, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2
Offset: 1

Author

Gus Wiseman, Oct 27 2022

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The a(3600) = 5 divisors, their prime indices, and the prime indices of their quotients:
  45: {2,2,3} * {1,1,1,1,3}
  50: {1,3,3} * {1,1,1,2,2}
  60: {1,1,2,3} * {1,1,2,3}
  72: {1,1,1,2,2} * {1,3,3}
  80: {1,1,1,1,3} * {2,2,3}
		

Crossrefs

Positions of nonzero terms are A357976, counted by A002219.
A001222 counts prime factors, distinct A001221.
A056239 adds up prime indices, row sums of A112798.

Programs

  • Mathematica
    sumprix[n_]:=Total[Cases[FactorInteger[n],{p_,k_}:>k*PrimePi[p]]];
    Table[Length[Select[Divisors[n],sumprix[#]==sumprix[n]/2&]],{n,100}]
  • PARI
    A056239(n) = if(1==n, 0, my(f=factor(n)); sum(i=1, #f~, f[i, 2] * primepi(f[i, 1])));
    A357879(n) = sumdiv(n,d, A056239(d)==A056239(n/d)); \\ Antti Karttunen, Jan 20 2025

Formula

a(n) = Sum_{d|n} [A056239(d) = A056239(n/d)], where [ ] is the Iverson bracket. - Antti Karttunen, Jan 20 2025

Extensions

Data section extended to a(108) by Antti Karttunen, Jan 20 2025

A213086 Square array read by antidiagonals: T(n,m) (n>=1, m>=0) is the number of partitions of mn that are the sum of m not necessarily distinct partitions of n.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 5, 6, 4, 1, 1, 7, 14, 10, 5, 1, 1, 11, 25, 30, 15, 6, 1, 1, 15, 53, 65, 55, 21, 7, 1, 1, 22, 89, 173, 140, 91, 28, 8, 1, 1, 30, 167, 343, 448, 266, 140, 36, 9, 1, 1, 42, 278, 778, 1022, 994, 462, 204, 45, 10, 1, 1, 56, 480, 1518, 2710, 2562, 1974, 750, 285, 55, 11, 1
Offset: 1

Author

N. J. A. Sloane, Jun 05 2012

Keywords

Examples

			The array begins:
  1,  1,   1,   1,    1,    1,     1,     1,     1,      1, ...
  1,  2,   3,   4,    5,    6,     7,     8,     9,     10, ...
  1,  3,   6,  10,   15,   21,    28,    36,    45,     55, ...
  1,  5,  14,  30,   55,   91,   140,   204,   285,    385, ...
  1,  7,  25,  65,  140,  266,   462,   750,  1155,   1705, ...
  1, 11,  53, 173,  448,  994,  1974,  3606,  6171,  10021, ...
  1, 15,  89, 343, 1022, 2562,  5670, 11418, 21351,  37609, ...
  1, 22, 167, 778, 2710, 7764, 19314, 43164, 88671, 170170, ...
  ...
		

Crossrefs

Main diagonal gives A284645.

Programs

  • Maple
    with(combinat):
    g:= proc(n, m) option remember;
          `if`(m>1, map(x-> map(y-> sort([x[], y[]]), g(n, 1))[],
           g(n, m-1)), `if`(m=1, map(x->map(y-> `if`(y>1, y-1, NULL), x),
           {partition(n)[]}), {[]}))
        end:
    T:= (n, m)-> nops(g(n, m)):
    seq(seq(T(d-m, m), m=0..d-1), d=1..12);  # Alois P. Heinz, Jul 11 2012
  • Mathematica
    T[n_, m_] := Module[{ip, lg, i}, ip = IntegerPartitions[n]; lg = Length[ ip]; i[0]=1; Table[Join[Sequence @@ Table[ip[[i[k]]], {k, 1, m}]] // Sort, Evaluate[Sequence @@ Table[{i[k], i[k-1], lg}, {k, 1, m}]]] // Flatten[#, m-1]& // Union // Length]; T[_, 0] = 1;
    Table[T[n-m, m], {n, 1, 12}, {m, 0, n - 1}] // Flatten (* Jean-François Alcover, May 25 2016 *)

Formula

Row n is a polynomial in m: see A213074 for the coefficients.

Extensions

More terms and cross-references from Alois P. Heinz, Jul 11 2012

A002220 a(n) is the number of partitions of 3n that can be obtained by adding together three (not necessarily distinct) partitions of n.

Original entry on oeis.org

1, 4, 10, 30, 65, 173, 343, 778, 1518, 3088, 5609, 10959, 18990, 34441, 58903, 102044, 167499, 282519, 451529, 737208, 1160102, 1836910, 2828466, 4410990, 6670202, 10161240, 15186315, 22758131, 33480869
Offset: 1

Keywords

Examples

			From _Gus Wiseman_, Apr 20 2024: (Start)
The a(1) = 1 through a(3) = 10 triquanimous partitions:
  (111)  (222)     (333)
         (2211)    (3321)
         (21111)   (32211)
         (111111)  (33111)
                   (222111)
                   (321111)
                   (2211111)
                   (3111111)
                   (21111111)
                   (111111111)
(End)
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

See A002219 for further details. Cf. A002221, A002222, A213074.
A column of A213086.
For biquanimous we have A002219, ranks A357976.
For non-biquanimous we have A371795, ranks A371731, even case A006827.
The Heinz numbers of these partitions are given by A371955.
The strict case is A372122.
A321451 counts non-quanimous partitions, ranks A321453.
A321452 counts quanimous partitions, ranks A321454.
A371783 counts k-quanimous partitions.

Extensions

Edited by N. J. A. Sloane, Jun 03 2012
a(12)-a(20) from Alois P. Heinz, Jul 10 2012
a(21)-a(29) from Sean A. Irvine, Sep 05 2013

A002221 a(n) is the number of partitions of 4n that can be obtained by adding together four (not necessarily distinct) partitions of n.

Original entry on oeis.org

1, 5, 15, 55, 140, 448, 1022, 2710, 6048, 14114, 28831, 64091, 123649, 251295, 476835, 916972, 1654044, 3080159, 5377431, 9624588, 16490017, 28433473, 47423409, 80279375
Offset: 1

Keywords

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

See A002219 for further details. Cf. A002220, A002222, A213074.
A column of A213086.

Extensions

Edited by N. J. A. Sloane, Jun 03 2012
a(12)-a(16) from Alois P. Heinz, Jul 10 2012
a(17)-a(24) from Sean A. Irvine, Sep 05 2013

A002222 a(n) is the number of partitions of 5n that can be obtained by adding together five (not necessarily distinct) partitions of n.

Original entry on oeis.org

1, 6, 21, 91, 266, 994, 2562, 7764, 19482, 51212, 116028, 288541, 612463, 1375609, 2862437, 6036606, 11846488, 24080685, 45506290
Offset: 1

Keywords

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

See A002219 for further details. Cf. A000041, A002220, A002221, A213074.
A column of A213086.

Extensions

Edited by N. J. A. Sloane, Jun 03 2012
a(12)-a(13) from Alois P. Heinz, Jul 10 2012
a(14)-a(19) from Sean A. Irvine, Sep 06 2013

A273528 Triangle T(n,m) (n >= 1, 0 <= m < n) giving coefficients of (n-1)! P_n, where P_n is the polynomial formula for row n of A213086.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 3, 2, 0, 2, 9, 10, 3, 0, 2, 25, 50, 35, 8, 0, -12, 86, 270, 260, 102, 14, 0, -120, 140, 1344, 2030, 1260, 350, 36, 0, -1248, -1016, 7336, 15862, 13048, 5236, 1024, 78, 0, -9216, -22464, 28528, 124488, 139776, 76104, 22152, 3312, 200, 0, -90720, -322344, 1860, 1036990, 1514205, 1018563, 379890, 80760, 9165, 431
Offset: 1

Author

Jean-François Alcover, May 24 2016

Keywords

Examples

			Row T(5) = {0, 2, 9, 10, 3}, so P_5(k) = (1/4!)(2k + 9k^2 + 10k^3 + 3k^4), which gives 1, 7, 25, 65, 140, 266, ..., that is A001296 (row 5 of A213086), for k >=1.
Triangle begins:
{1},
{0, 1},
{0, 1, 1},
{0, 1, 3, 2},
{0, 2, 9, 10, 3},
{0, 2, 25, 50, 35, 8},
{0, -12, 86, 270, 260, 102, 14},
...
		

Crossrefs

Formula

The first formulas (stripped of factorials) :
1,
k,
k + k^2,
k + 3 k^2 + 2 k^3,
2 k + 9 k^2 + 10 k^3 + 3 k^4,
2 k + 25 k^2 + 50 k^3 + 35 k^4 + 8 k^5,
-12 k + 86 k^2 + 270 k^3 + 260 k^4 + 102 k^5 + 14 k^6,
-120 k + 140 k^2 + 1344 k^3 + 2030 k^4 + 1260 k^5 + 350 k^6 + 36 k^7,
...
Showing 1-10 of 10 results.