A213190 a(0)=1, a(1)=1, a(n) = n*a(n-1) + 3*a(n-2).
1, 1, 5, 18, 87, 489, 3195, 23832, 200241, 1873665, 19337373, 218332098, 2677997295, 35468961129, 504599447691, 7675398598752, 124320175923105, 2136469186489041, 38829405884572053, 744168119366336130, 14999850604980438759, 317229367062688222329
Offset: 0
Keywords
Examples
From _Wolfdieter Lang_, Mar 08 2013: (Start) a(4) = 4*a(3) + 3*a(2) = 4*18 + 3*5 = 87. Morse code: a(4) = 87 from the sum of all 5 labeled codes on [1,2,3,4], one with no dash, three with one dash and one with two dashes: 4! + (3*4 + 1*4 + 1*2)*(3) + (3)^2 = 87. (End)
Links
- G. C. Greubel, Table of n, a(n) for n = 0..445 (terms 0..250 from Reinhard Zumkeller)
Programs
-
Haskell
a213190 n = a213190_list !! n a213190_list = 1 : 1 : zipWith (+) (zipWith (*) [2..] $ tail a213190_list) (map (* 3) a213190_list) -- Reinhard Zumkeller, Feb 20 2015
-
Maple
A:=(n,x)->sum((n-k-2)!*binomial(n-k,k+2)*x^(k+1)/k!,k=0..floor(n/2+1)) B:=(n,x)->sum(n-k)!*binomial(n-k-1,k)*x^k/(k+1)!,k=0..floor((n+1)/2)) seq(A(n,3)+B(n,3), n=2..20)
-
Mathematica
RecurrenceTable[{a[0] == 1, a[1] == 1, a[n] == n*a[n - 1] + 3 a[n - 2]}, a[n], {n, 50}] (* G. C. Greubel, Aug 16 2017 *)
-
PARI
a(n) = sum(k=0, n\2, ((n-k)!/k!)*binomial(n-k,k)*3^k); /* Joerg Arndt, Mar 07 2013 */
Formula
a(0)=1, a(1)=1, a(n) = (Sum_{k=0..floor(n/2+1)} (n-k-2)!*binomial(n-k,k+2)*3^(k+1)/k!) + (Sum_{k=0..floor((n+1)/2)} (n-k)!*binomial(n-k-1,k)*3^k/(k+1)!), n>1.
a(n) = 2*sqrt(3)^(n+1)*(BesselI(0, 2*sqrt(3))*BesselK(n+1, 2*sqrt(3)) - BesselK(0, 2*sqrt(3))*BesselI(n+1, -2*sqrt(3))), n >= 0. See Q(n,3) from A084950. - Wolfdieter Lang, Mar 06 2013
a(n) = Sum_{k=0..floor(n/2)} (((n-k)!/k!)*binomial(n-k,k)*3^k). - Gary Detlefs and Wolfdieter Lang, Mar 06 2013
Asymptotics: lim_{n->oo} a(n)/n! = BesselI(0,2*sqrt(3)) = 7.15899653680... See a comment on the large n behavior of Bessel functions under A084950. - Wolfdieter Lang, Mar 08 2013
Comments