A213211 Triangular array read by rows: T(n,k) is the number of size k subsets of {1,2,...,n} such that (when the elements are arranged in increasing order) the smallest element is congruent to 1 mod 3 and the difference of every pair of successive elements is also congruent to 1 mod 3.
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 3, 1, 1, 1, 1, 2, 3, 4, 1, 1, 1, 1, 3, 3, 4, 5, 1, 1, 1, 1, 3, 6, 4, 5, 6, 1, 1, 1, 1, 3, 6, 10, 5, 6, 7, 1, 1, 1, 1, 4, 6, 10, 15, 6, 7, 8, 1, 1, 1, 1, 4, 10, 10, 15, 21, 7, 8, 9, 1, 1, 1, 1, 4, 10, 20, 15, 21, 28, 8, 9, 10, 1, 1, 1
Offset: 0
Examples
T(6,3) = 4 because we have: {1,2,3}, {1,2,6}, {1,5,6}, {4,5,6}. 1; 1, 1; 1, 1, 1; 1, 1, 1, 1; 1, 2, 1, 1, 1; 1, 2, 3, 1, 1, 1; 1, 2, 3, 4, 1, 1, 1; 1, 3, 3, 4, 5, 1, 1, 1; 1, 3, 6, 4, 5, 6, 1, 1, 1; 1, 3, 6, 10, 5, 6, 7, 1, 1, 1; 1, 4, 6, 10, 15, 6, 7, 8, 1, 1, 1;
References
- Combinatorial Enumeration, I. Goulden and D. Jackson, John Wiley and Sons, 1983, page 56.
Links
- Alois P. Heinz, Rows n = 0..140, flattened
Crossrefs
Cf. A046854.
Programs
-
Maple
T:= (n, k)-> binomial(k+floor((n-k)/3), k): seq(seq(T(n,k), k=0..n), n=0..14); # Alois P. Heinz, Mar 02 2013
-
Mathematica
nn=10;f[list_]:=Select[list,#>0&];Map[f,CoefficientList[Series[ (1+x+x^2)/(1-x^3-y x),{x,0,nn}],{x,y}]]//Grid
Formula
G.f.: (1 + x + x^2)/(1 - x^3 - y*x).
T(n,k) = C(k+floor((n-k)/3),k). - Alois P. Heinz, Mar 02 2013
Comments