cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A213211 Triangular array read by rows: T(n,k) is the number of size k subsets of {1,2,...,n} such that (when the elements are arranged in increasing order) the smallest element is congruent to 1 mod 3 and the difference of every pair of successive elements is also congruent to 1 mod 3.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 3, 1, 1, 1, 1, 2, 3, 4, 1, 1, 1, 1, 3, 3, 4, 5, 1, 1, 1, 1, 3, 6, 4, 5, 6, 1, 1, 1, 1, 3, 6, 10, 5, 6, 7, 1, 1, 1, 1, 4, 6, 10, 15, 6, 7, 8, 1, 1, 1, 1, 4, 10, 10, 15, 21, 7, 8, 9, 1, 1, 1, 1, 4, 10, 20, 15, 21, 28, 8, 9, 10, 1, 1, 1
Offset: 0

Views

Author

Geoffrey Critzer, Mar 02 2013

Keywords

Comments

Row sums are A000930.

Examples

			T(6,3) = 4 because we have: {1,2,3}, {1,2,6}, {1,5,6}, {4,5,6}.
1;
1, 1;
1, 1, 1;
1, 1, 1,  1;
1, 2, 1,  1,  1;
1, 2, 3,  1,  1, 1;
1, 2, 3,  4,  1, 1, 1;
1, 3, 3,  4,  5, 1, 1, 1;
1, 3, 6,  4,  5, 6, 1, 1, 1;
1, 3, 6, 10,  5, 6, 7, 1, 1, 1;
1, 4, 6, 10, 15, 6, 7, 8, 1, 1, 1;
		

References

  • Combinatorial Enumeration, I. Goulden and D. Jackson, John Wiley and Sons, 1983, page 56.

Crossrefs

Cf. A046854.

Programs

  • Maple
    T:= (n, k)-> binomial(k+floor((n-k)/3), k):
    seq(seq(T(n,k), k=0..n), n=0..14);  # Alois P. Heinz, Mar 02 2013
  • Mathematica
    nn=10;f[list_]:=Select[list,#>0&];Map[f,CoefficientList[Series[ (1+x+x^2)/(1-x^3-y x),{x,0,nn}],{x,y}]]//Grid

Formula

G.f.: (1 + x + x^2)/(1 - x^3 - y*x).
T(n,k) = C(k+floor((n-k)/3),k). - Alois P. Heinz, Mar 02 2013